Research Article
BibTex RIS Cite

VARIATIONS IN HEAT SHOCK PROTEINS BETWEEN DIFFERENT HONEY BEES AND BEE TAXA UTILIZING BIOINFORMATICS

Year 2024, Volume: 24 Issue: 1, 38 - 52, 29.05.2024
https://doi.org/10.31467/uluaricilik.1390515

Abstract

The changes in climate and exposure to heat stress are major concerns for agricultural communities as it affects pollinators like bees. Bees from different taxa play a crucial role in plant pollination, and their exposure to heat stress induces the expression of heat shock proteins (HSPs) to protect their cells. Several studies have analyzed the variations in HSPs expression levels and amino acid sequences. Databases for sequences of HSPs with different molecular weights are currently available. Variations in HSPs expression levels have been noted among individuals belonging to the same or different bee taxa exposed to heat stress. The properties of HSPs could help in understanding these variations. This study utilized bioinformatics and protein analysis tools to investigate the variations in sequences of heat shock proteins 60 (HSP60) and 83 (HSP83) in 18 bee taxa (15 from Family Apidae, 2 from Family Halictidae, and one from Megachilidae). The analysis showed some identical values to bees from genus Apis and Bombus. For HSP60, all bee taxa had high G content (587-602), followed by A (438-444), then C (389-404), and finally T (282-291). For HSP83, all bee taxa had high A content (730-759), followed by G (572-592), then C (406-419), and finally T (415-429). The conserved domains were highly identical in case of HSP60 versus HSP83. The motifs were from one or more protein families with variation among taxa. All proteins showed hydrophilic properties with variable isoelectric points. The study suggested an identical 3-D structure for proteins in all bee taxa. The role of the detected variations in affecting the response of HSPs to stress was discussed. This study paves the way for more investigations on HSPs and encourages the use of bioinformatics and protein analysis tools to explain any observable variations.

References

  • Abou-Shaara H.F. Expectations about the potential impacts of climate change on honey bee colonies in Egypt. J. Apic., 2016; 31, 157-164.
  • Abou-Shaara H.F. Utilizing bioinformatics to detect genetic similarities between African honey bee subspecies. J. Genet., 2019; 98, 96. doi:10.1007/s12041-019-1145-7.
  • Abou-Shaara H.F. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J. Therm. Biol., 2024; 119, 103784.
  • Abou-Shaara H.F., & Bayoumi S.R. Genetic variations and relationships between deformed wing virus strains infesting honey bees based on structural proteins. Biologia, 2021; 76(12), 3865-3873.
  • Abou-Shaara H.F., & Elbanoby M.I.A bioinformatics study to detect the genetic characteristics of Vespa hornets (Hymenoptera: Vespidae). J. Entomol. Res. Soc., 2020; 22, 227-237.
  • Abou-Shaara H.F., Al-Ghamdi A.A. & Mohamed, A.A. Tolerance of two honey bee races to various temperature and relative humidity gradients. Env. Exp. Biol., 2012; 10, 133-138.
  • Abou-Shaara H.F., Al-Khalaf A.A. Using Maximum Entropy Algorithm to Analyze Current and Future Distribution of the Asian hornet, Vespa velutina, in Europe and North Africa Under Climate Change Conditions. J. Entomol. Res. Soc., 2022; 24, 07-21.
  • Abou-Shaara H.F., Amiri E. & Parys K.A. Tracking the effects of climate change on the distribution of Plecia nearctica (Diptera, Bibionidae) in the USA using MaxEnt and GIS. Diversity 2022; 14, 690.
  • Abou-Shaara H.F., Owayss A.A., Ibrahim Y.Y. & Basuny N.K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc., 2017; 64, 455-463.
  • Al-Ghzawi A.A.M.A., Al-Zghoul M.B., Zaitoun S., Al-Omary I.M. & Alahmad N.A. Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens. J. Ther. Biol., 2022; 104, 103194.
  • Alqarni A.S. Tolerance of summer temperature in imported and indigenous honeybee Apis mellifera L. races in central Saudi Arabia. Saudi J. Biol. Sci., 2022; 13, 123–127.
  • Alqarni A.S., Ali H., Iqbal J., Owayss A.A. & Smith B.H. Expression of heat shock proteins in adult honey bee (Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J. Biol. Sci., 2019; 26, 1372–1376.
  • Arretz P.V. & Macfarlane R.P. The introduction of Bombus ruderatus to Chile for red clover pollination. Bee World, 1986; 67, 15-22.
  • Arya R., Mallik M. & Lakhotia S.C. Heat shock genes - integrating cell survival and death. J. Biosci., 2007; 32, 595–610.
  • Aslan C.E., Liang C.T., Galindo B., Kimberly H. & Topete W. The role of honey bees as pollinators in natural areas. Nat. Areas J. 2016; 36, 478-488.
  • Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012; 15, 365–377.
  • Bernauer O.M., Tierney S.M. & Cook J.M. Efficiency and effectiveness of native bees and honey bees as pollinators of apples in New South Wales orchards. Agri. Ecosyst. Environ. 2022; 337, 108063.
  • Blažytė-Čereškienė L., Vaitkevičienė G., Venskutonytė S. & Būda, V. Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Žemdirb. (Agric.) 2010¸97, 61-70.
  • Brocchieri L. & Karlin S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Prot. Sci. 2000; 9, 476-486.
  • Bukau B. & Horwich A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92, 351-366.
  • Candido E.P.M. Heat shock proteins. In: Brenner, S., Miller, J.H. (Eds.), Encyclopedia of Genetics. Academic Press, New York, 2001¸914–915.
  • Cappello F., Marino Gammazza, A., Palumbo Piccionello A., Campanella C., Pace A., Conway de Macario, E. & Macario, A.J. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Exp. Opin. Ther. Tar. 2014¸18, 185-208.
  • Caruso Bavisotto C., Alberti G., Vitale A.M., Paladino L., Campanella C., Rappa, F., Gorska M., Conway de Macario E., Cappello F., Macario A.J.L. & Marino Gammazza A.. Hsp60 post-translational modifications: functional and pathological consequences. Front. Mol. Biosci. 2020¸7, 95.
  • Chen D., Wang S., Tao X., Zhou L., Wang J., Sun F., Sun M., & Gao X. Hsp83 regulates the fate of germline stem cells in Drosophila ovary. J. Genet. Genom. 2018¸45, 219-222.
  • Csermely P., Schnaider T., So C., Prohászka Z. & Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Therapeut. 1998¸79, 129-168.
  • David J.R., Araripe L.O., Chakir M., Legout H., Lemos B., Petavy G., Rohmer C., Joly D., Moreteau B. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 2005¸18, 838–846.
  • Du Y., Ma A., Zha Q.H., Ma G. & Yang H.P. Effects of heat stress on physiological and biochemical mechanisms of insects: a literature review. Acta Ecol. Sin. 2007¸27, 1565–1572.
  • Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl, T.R. & Mearns, L.O. Climate extremes: observations, modeling, and impacts. Sci. 2000; 289, 2068–2074.
  • Elekonich M.M. Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees. Cell Stress Chaperones 2009; 14, 219-226.
  • Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera, Apidae, Apis). J. Hymenoptera Res. 1999¸ 8, 165–196.
  • Feder M.E. & Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999; 61, 243–282.
  • Gibney E., Gault J. & Williams J. The use of stress proteins as a biomarker of sublethal toxicity: induction of heat shock protein 70 by 2-isobutyl piperidine and transition metals at sub-lethal concentrations. Biomarkers 2001¸6, 204-217.
  • Gupta R.S. Evolution of the chaperonin families (Hsp60, Hsp 10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 1995; 15, 1–11.
  • Hausmann S.L., Petermann J.S. & Rolff J. Wild bees as pollinators of city trees. Insect Conserv. Div. 2016; 9, 97-107.
  • He Q., Wen D., Jia Q., Cui C., Wang J., Palli S.R., Li S. Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J. Biol. Chem. 2014; 289, 27874-27885.
  • Heard T.A. The role of stingless bees in crop pollination. Ann. Rev. Entomol. 1999; 44, 183-206.
  • Henderson B., Fares M.A. & Lund P.A. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol. Rev. Camb. Phil. Soc. 2013; 88, 955–987.
  • Hoffmann A.A., Sørensen J.G. & Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 2003; 28, 175–216.
  • Hung K.L.J., Kingston J.M., Albrecht M., Holway D.A. & Kohn J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Royal Soc. B: Biol. Sci. 2018; 285, 20172140.
  • Ilyasov R.A., Lee M.L., Takahashi J.I., Kwon H.W. & Nikolenko A.G. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J. Biol. Sci. 2020; 27, 3615-3621.
  • Ilyasov R.A., Lee M.-L., Yunusbaev U.B., Nikolenko A.G. & Kwon H.-W. Estimation of C-derived introgression into A. m. mellifera colonies in the Russian Urals using microsatellite genotyping. Genes and Genom. 2020; 42 (9), 987–996.
  • Karl I., Stoks R., De Block, M., Janowitz S. & Fischer K. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biol. 2011; 17, 676–687.
  • Kearns C.A. & Inouye D.W. Pollinators, flowering plants, and conservation biology. Bioscience 1997; 47, 297-307.
  • Kevan P.G. & Viana B.F. The global decline of pollination services. Biodiversity, 2003; 4, 3-8.
  • Koo J., Son T.G., Kim S.Y. & Lee K.Y. Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. J. Asia Pac. Entomol. 2015; 18, 583–589.
  • Kyte J. & Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157, 105-132.
  • Lautenbach S., Seppelt R., Liebscher J. & Dormann, C.F. Spatial and temporal trends of global pollination benefit. PLoS One 2012; 7, e35954.
  • Le Conte, Y. & Navajas M. Climate change: impact on honey bee populations and diseases. Revue Sci. Tec. 2008; 27, 499-510.
  • Li G., Zhao, H. Guo, H., Wang Y., Cui, X., Li H., Guo X. Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. Sci. Total Env. 2020; 716, 137036.
  • Martinet B., Lecocq, T., Smet, J. & Rasmont, P. A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombus Latreille, 1802). PloS One 2015; 10, e0118591.
  • Meng Q., Li B.X. & Xiao X. Toward developing chemical modulators of Hsp60 as potential therapeutics. Front. Mol. Biosci. 2018; 5, 35.
  • Mosser D.D., Caron A.W., Bourget L., Denis-Larose C. & Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 1997; 17, 5317–5327.
  • Nazir A., Saxena D.K. & Kar Chowdhuri D. Induction of hsp70 in transgenic Drosophila: biomarker of exposure against phthalimide group of chemicals. Biochim. Biophys. Acta 2003; 1621, 218–225.
  • Nicholls C.I. & Altieri M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sust. Develop. 2013; 33, 257-274.
  • Oyen K.J., Giri S. & Dillon M.E. Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Thermal Biol. 2016; 59, 52-57.
  • Parnas A., Nisemblat S., Weiss C., Levy-Rimler G., Pri-Or A., Zor T., Lund P.A., Bross P., Azem A. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012; 7, e50318.
  • Pettis J.S., Rice N., Joselow K., vanEngelsdorp, D. & Chaimanee V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS One 2016; 11, e0147220.
  • Qi, Y., Wang H., Zou, Y., Liu C., Liu Y., Wang Y. & Zhang W. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett. 2011; 585, 231-239.
  • Ray M., Acharya S., Shambhavi S. & Lakhotia S.C. Over-expression of Hsp83 in grossly depleted hsromega lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J. Biosci. 2019; 44.
  • Reddy P.V., Verghese A. & Rajan V.V. Potential impact of climate change on honeybees (Apis spp.) and their pollination services. Pest Manag. Horticul. Ecosyst. 2012; 18, 121-127.
  • Romanucci M., Bastow T. & Della Salda L. Heat shock proteins in animal neoplasms and human tumours–a comparison. Cell Stress Chaperones 2012; 13, 253–262.
  • Rutherford S.L. & Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998; 396, 336.
  • Sales K., Vasudeva R., Dickinson M.E., Godwin J.L., Lumley A.J., Michalczyk L., Hebberecht,L., Thomas P., Franco A. & Gage M.J.G. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 2018; 9, 4771.
  • Sangle P.M., Satpute S.B., Khan F.S. & Rode N.S. Impact of climate change on insects. Trends Biosci 2015; 8, 3579-3582.
  • Schlesinger M.J. Heat shock proteins. J. Biol. Chem. 1990; 21, 12111-12114.
  • Severson D.W., Erickson, E.H., Williamson, J.L., Aiken, J.M. Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 1990; 46, 737-739.
  • Shamrock V.J., Duval J.F., Lindsey G.G., & Gaboriaud F. The role of the heat shock protein Hsp12p in the dynamic response of Saccharomyces cerevisiae to the addition of Congo red. FEMS yeast research, 2009; 9(3), 391-399.
  • Sheppard W.S. & Meixner M.D. Apis mellifera pomonella, a new honeybee subspecies from Central Asia. Apidologie 2003; 34, 367–375.
  • Stabentheiner A., Kovac H. & Brodschneider R. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One 2010; 5, e8967.
  • Tautz J., Maier S., Groh C., R¨ossler W., Brockmann A. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc. Natl. Acad. Sci. 2003; 100, 7343–7347.
  • Thomann M., Imbert E., Devaux C., Cheptou P.O. Flowering plants under global pollinator decline. Trend. Plant Sci. 2013; 18, 353-359.
  • Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham, Y.C., Erasmus B.F., De Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., Van Jaarsveld A.S., Midgley, G.F., Miles, L., Ortega- Huerta, M.A., Peterson A.T., Phillips O.L., Williams S.E. Extinction risk from climate change. Nature 2004; 427, 145–148.
  • Vermeulen C.J. & Loeschcke V. Longevity and the stress response in Drosophila. Exp. Gerontol. 2007; 42, 153–159.
  • Whitehorn P.R., Tinsley M.C, Brown M.J., Goulson D. Investigating the impact of deploying commercial Bombus terrestris for crop pollination on pathogen dynamics in wild bumble bees. J. Apic. Res. 2013; 52, 149-157.
  • Winfree R, Gross, B.J. & Kremen C. Valuing pollination services to agriculture. Ecol. Econ. 2011; 71, 80-88.
  • Yano K, Hasegawa T, Kuboi R, Komasawa I, & Tsuchido T. Characterization of surface properties of heat shock proteins for the separation using aqueous two-phase systems. J. Chem. Eng. Japan, 1994; 27(6), 808-814.
  • Zambra E, Martinet B, Brasero N, Michez D. & Rasmont P. Hyperthermic stress resistance of bumblebee males: test case of Belgian species. Apidologie 2020; 51, 911-920.
  • Zhao H, Li G, Guo D, Li H, Liu Q, Xu B.& Guo X. Response mechanisms to heat stress in bees. Apidologie 2021; 52, 388-399.

Biyoinformatik Kullanılarak Farklı Bal Arıları ve Arı Taksonları Arasında Isı Şoku Proteinlerindeki Varyasyonlar

Year 2024, Volume: 24 Issue: 1, 38 - 52, 29.05.2024
https://doi.org/10.31467/uluaricilik.1390515

Abstract

İklimdeki değişiklikler ve tozlaştırıcıların ısı stresine maruz kalması, tarım topluluklarının en büyük endişeleri arasında yer alıyor. Farklı taksonlara ait arıların bitkilerin tozlaşmasında büyük rolü vardır. Arıların ısı stresine maruz kalması, vücut hücrelerini korumak için ısı şoku proteinlerinin (HSP'ler) ekspresyonuna neden olur. Birçok çalışma HSP'lerin ekspresyon seviyelerindeki farklılıkları araştırmış ve amino asit dizilerini analiz etmiştir. Şu anda, farklı molekül ağırlıklarına sahip HSP dizileri için veritabanları mevcuttur. Aynı arı taksonuna ait veya ısı stresine maruz kalan farklı taksonlara ait bireyler arasında HSP'lerin ekspresyon seviyelerindeki farklılıklar kaydedilmiştir. HSP'lerin özelliklerinin bu tür farklılıkların anlaşılmasına yardımcı olabileceği varsayılmaktadır. Bu çalışmada, 18 arı taksonunda (15'i Apidae familyasından, 2'si Halictidae familyasından ve bir Megachilidae'den). Amino asitlerin ve nükleotidlerin analizi, Apis ve Bombus cinsinden arılarla aynı değerleri gösterdi. Korunan alanlar, HSP60 durumunda HSP83'e göre oldukça özdeşti. Motifler, taksonlar arasında çeşitlilik gösteren bir veya daha fazla protein ailesindendi. Tüm proteinler değişken izoelektrik noktalarla hidrofilik özellikler gösterdi. Çalışma, tüm arı taksonlarındaki proteinler için aynı 3 boyutlu yapıyı öne sürdü. Tespit edilen varyasyonların HSP'lerin strese tepkisini etkilemedeki rolü tartışıldı. Bu çalışma HSP'ler hakkında daha fazla araştırmanın önünü açıyor ve gözlemlenebilir varyasyonları açıklamak için biyoinformatik ve protein analiz araçlarının kullanımını teşvik ediyor.

Ethical Statement

Not applicable because this study on honey bees and not animals or humans

References

  • Abou-Shaara H.F. Expectations about the potential impacts of climate change on honey bee colonies in Egypt. J. Apic., 2016; 31, 157-164.
  • Abou-Shaara H.F. Utilizing bioinformatics to detect genetic similarities between African honey bee subspecies. J. Genet., 2019; 98, 96. doi:10.1007/s12041-019-1145-7.
  • Abou-Shaara H.F. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J. Therm. Biol., 2024; 119, 103784.
  • Abou-Shaara H.F., & Bayoumi S.R. Genetic variations and relationships between deformed wing virus strains infesting honey bees based on structural proteins. Biologia, 2021; 76(12), 3865-3873.
  • Abou-Shaara H.F., & Elbanoby M.I.A bioinformatics study to detect the genetic characteristics of Vespa hornets (Hymenoptera: Vespidae). J. Entomol. Res. Soc., 2020; 22, 227-237.
  • Abou-Shaara H.F., Al-Ghamdi A.A. & Mohamed, A.A. Tolerance of two honey bee races to various temperature and relative humidity gradients. Env. Exp. Biol., 2012; 10, 133-138.
  • Abou-Shaara H.F., Al-Khalaf A.A. Using Maximum Entropy Algorithm to Analyze Current and Future Distribution of the Asian hornet, Vespa velutina, in Europe and North Africa Under Climate Change Conditions. J. Entomol. Res. Soc., 2022; 24, 07-21.
  • Abou-Shaara H.F., Amiri E. & Parys K.A. Tracking the effects of climate change on the distribution of Plecia nearctica (Diptera, Bibionidae) in the USA using MaxEnt and GIS. Diversity 2022; 14, 690.
  • Abou-Shaara H.F., Owayss A.A., Ibrahim Y.Y. & Basuny N.K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc., 2017; 64, 455-463.
  • Al-Ghzawi A.A.M.A., Al-Zghoul M.B., Zaitoun S., Al-Omary I.M. & Alahmad N.A. Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens. J. Ther. Biol., 2022; 104, 103194.
  • Alqarni A.S. Tolerance of summer temperature in imported and indigenous honeybee Apis mellifera L. races in central Saudi Arabia. Saudi J. Biol. Sci., 2022; 13, 123–127.
  • Alqarni A.S., Ali H., Iqbal J., Owayss A.A. & Smith B.H. Expression of heat shock proteins in adult honey bee (Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J. Biol. Sci., 2019; 26, 1372–1376.
  • Arretz P.V. & Macfarlane R.P. The introduction of Bombus ruderatus to Chile for red clover pollination. Bee World, 1986; 67, 15-22.
  • Arya R., Mallik M. & Lakhotia S.C. Heat shock genes - integrating cell survival and death. J. Biosci., 2007; 32, 595–610.
  • Aslan C.E., Liang C.T., Galindo B., Kimberly H. & Topete W. The role of honey bees as pollinators in natural areas. Nat. Areas J. 2016; 36, 478-488.
  • Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012; 15, 365–377.
  • Bernauer O.M., Tierney S.M. & Cook J.M. Efficiency and effectiveness of native bees and honey bees as pollinators of apples in New South Wales orchards. Agri. Ecosyst. Environ. 2022; 337, 108063.
  • Blažytė-Čereškienė L., Vaitkevičienė G., Venskutonytė S. & Būda, V. Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Žemdirb. (Agric.) 2010¸97, 61-70.
  • Brocchieri L. & Karlin S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Prot. Sci. 2000; 9, 476-486.
  • Bukau B. & Horwich A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92, 351-366.
  • Candido E.P.M. Heat shock proteins. In: Brenner, S., Miller, J.H. (Eds.), Encyclopedia of Genetics. Academic Press, New York, 2001¸914–915.
  • Cappello F., Marino Gammazza, A., Palumbo Piccionello A., Campanella C., Pace A., Conway de Macario, E. & Macario, A.J. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Exp. Opin. Ther. Tar. 2014¸18, 185-208.
  • Caruso Bavisotto C., Alberti G., Vitale A.M., Paladino L., Campanella C., Rappa, F., Gorska M., Conway de Macario E., Cappello F., Macario A.J.L. & Marino Gammazza A.. Hsp60 post-translational modifications: functional and pathological consequences. Front. Mol. Biosci. 2020¸7, 95.
  • Chen D., Wang S., Tao X., Zhou L., Wang J., Sun F., Sun M., & Gao X. Hsp83 regulates the fate of germline stem cells in Drosophila ovary. J. Genet. Genom. 2018¸45, 219-222.
  • Csermely P., Schnaider T., So C., Prohászka Z. & Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Therapeut. 1998¸79, 129-168.
  • David J.R., Araripe L.O., Chakir M., Legout H., Lemos B., Petavy G., Rohmer C., Joly D., Moreteau B. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 2005¸18, 838–846.
  • Du Y., Ma A., Zha Q.H., Ma G. & Yang H.P. Effects of heat stress on physiological and biochemical mechanisms of insects: a literature review. Acta Ecol. Sin. 2007¸27, 1565–1572.
  • Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl, T.R. & Mearns, L.O. Climate extremes: observations, modeling, and impacts. Sci. 2000; 289, 2068–2074.
  • Elekonich M.M. Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees. Cell Stress Chaperones 2009; 14, 219-226.
  • Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera, Apidae, Apis). J. Hymenoptera Res. 1999¸ 8, 165–196.
  • Feder M.E. & Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999; 61, 243–282.
  • Gibney E., Gault J. & Williams J. The use of stress proteins as a biomarker of sublethal toxicity: induction of heat shock protein 70 by 2-isobutyl piperidine and transition metals at sub-lethal concentrations. Biomarkers 2001¸6, 204-217.
  • Gupta R.S. Evolution of the chaperonin families (Hsp60, Hsp 10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 1995; 15, 1–11.
  • Hausmann S.L., Petermann J.S. & Rolff J. Wild bees as pollinators of city trees. Insect Conserv. Div. 2016; 9, 97-107.
  • He Q., Wen D., Jia Q., Cui C., Wang J., Palli S.R., Li S. Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J. Biol. Chem. 2014; 289, 27874-27885.
  • Heard T.A. The role of stingless bees in crop pollination. Ann. Rev. Entomol. 1999; 44, 183-206.
  • Henderson B., Fares M.A. & Lund P.A. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol. Rev. Camb. Phil. Soc. 2013; 88, 955–987.
  • Hoffmann A.A., Sørensen J.G. & Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 2003; 28, 175–216.
  • Hung K.L.J., Kingston J.M., Albrecht M., Holway D.A. & Kohn J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. Royal Soc. B: Biol. Sci. 2018; 285, 20172140.
  • Ilyasov R.A., Lee M.L., Takahashi J.I., Kwon H.W. & Nikolenko A.G. A revision of subspecies structure of western honey bee Apis mellifera. Saudi J. Biol. Sci. 2020; 27, 3615-3621.
  • Ilyasov R.A., Lee M.-L., Yunusbaev U.B., Nikolenko A.G. & Kwon H.-W. Estimation of C-derived introgression into A. m. mellifera colonies in the Russian Urals using microsatellite genotyping. Genes and Genom. 2020; 42 (9), 987–996.
  • Karl I., Stoks R., De Block, M., Janowitz S. & Fischer K. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biol. 2011; 17, 676–687.
  • Kearns C.A. & Inouye D.W. Pollinators, flowering plants, and conservation biology. Bioscience 1997; 47, 297-307.
  • Kevan P.G. & Viana B.F. The global decline of pollination services. Biodiversity, 2003; 4, 3-8.
  • Koo J., Son T.G., Kim S.Y. & Lee K.Y. Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. J. Asia Pac. Entomol. 2015; 18, 583–589.
  • Kyte J. & Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157, 105-132.
  • Lautenbach S., Seppelt R., Liebscher J. & Dormann, C.F. Spatial and temporal trends of global pollination benefit. PLoS One 2012; 7, e35954.
  • Le Conte, Y. & Navajas M. Climate change: impact on honey bee populations and diseases. Revue Sci. Tec. 2008; 27, 499-510.
  • Li G., Zhao, H. Guo, H., Wang Y., Cui, X., Li H., Guo X. Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. Sci. Total Env. 2020; 716, 137036.
  • Martinet B., Lecocq, T., Smet, J. & Rasmont, P. A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombus Latreille, 1802). PloS One 2015; 10, e0118591.
  • Meng Q., Li B.X. & Xiao X. Toward developing chemical modulators of Hsp60 as potential therapeutics. Front. Mol. Biosci. 2018; 5, 35.
  • Mosser D.D., Caron A.W., Bourget L., Denis-Larose C. & Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 1997; 17, 5317–5327.
  • Nazir A., Saxena D.K. & Kar Chowdhuri D. Induction of hsp70 in transgenic Drosophila: biomarker of exposure against phthalimide group of chemicals. Biochim. Biophys. Acta 2003; 1621, 218–225.
  • Nicholls C.I. & Altieri M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sust. Develop. 2013; 33, 257-274.
  • Oyen K.J., Giri S. & Dillon M.E. Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Thermal Biol. 2016; 59, 52-57.
  • Parnas A., Nisemblat S., Weiss C., Levy-Rimler G., Pri-Or A., Zor T., Lund P.A., Bross P., Azem A. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012; 7, e50318.
  • Pettis J.S., Rice N., Joselow K., vanEngelsdorp, D. & Chaimanee V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS One 2016; 11, e0147220.
  • Qi, Y., Wang H., Zou, Y., Liu C., Liu Y., Wang Y. & Zhang W. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett. 2011; 585, 231-239.
  • Ray M., Acharya S., Shambhavi S. & Lakhotia S.C. Over-expression of Hsp83 in grossly depleted hsromega lncRNA background causes synthetic lethality and l(2)gl phenocopy in Drosophila. J. Biosci. 2019; 44.
  • Reddy P.V., Verghese A. & Rajan V.V. Potential impact of climate change on honeybees (Apis spp.) and their pollination services. Pest Manag. Horticul. Ecosyst. 2012; 18, 121-127.
  • Romanucci M., Bastow T. & Della Salda L. Heat shock proteins in animal neoplasms and human tumours–a comparison. Cell Stress Chaperones 2012; 13, 253–262.
  • Rutherford S.L. & Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998; 396, 336.
  • Sales K., Vasudeva R., Dickinson M.E., Godwin J.L., Lumley A.J., Michalczyk L., Hebberecht,L., Thomas P., Franco A. & Gage M.J.G. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 2018; 9, 4771.
  • Sangle P.M., Satpute S.B., Khan F.S. & Rode N.S. Impact of climate change on insects. Trends Biosci 2015; 8, 3579-3582.
  • Schlesinger M.J. Heat shock proteins. J. Biol. Chem. 1990; 21, 12111-12114.
  • Severson D.W., Erickson, E.H., Williamson, J.L., Aiken, J.M. Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 1990; 46, 737-739.
  • Shamrock V.J., Duval J.F., Lindsey G.G., & Gaboriaud F. The role of the heat shock protein Hsp12p in the dynamic response of Saccharomyces cerevisiae to the addition of Congo red. FEMS yeast research, 2009; 9(3), 391-399.
  • Sheppard W.S. & Meixner M.D. Apis mellifera pomonella, a new honeybee subspecies from Central Asia. Apidologie 2003; 34, 367–375.
  • Stabentheiner A., Kovac H. & Brodschneider R. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One 2010; 5, e8967.
  • Tautz J., Maier S., Groh C., R¨ossler W., Brockmann A. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc. Natl. Acad. Sci. 2003; 100, 7343–7347.
  • Thomann M., Imbert E., Devaux C., Cheptou P.O. Flowering plants under global pollinator decline. Trend. Plant Sci. 2013; 18, 353-359.
  • Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham, Y.C., Erasmus B.F., De Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., Van Jaarsveld A.S., Midgley, G.F., Miles, L., Ortega- Huerta, M.A., Peterson A.T., Phillips O.L., Williams S.E. Extinction risk from climate change. Nature 2004; 427, 145–148.
  • Vermeulen C.J. & Loeschcke V. Longevity and the stress response in Drosophila. Exp. Gerontol. 2007; 42, 153–159.
  • Whitehorn P.R., Tinsley M.C, Brown M.J., Goulson D. Investigating the impact of deploying commercial Bombus terrestris for crop pollination on pathogen dynamics in wild bumble bees. J. Apic. Res. 2013; 52, 149-157.
  • Winfree R, Gross, B.J. & Kremen C. Valuing pollination services to agriculture. Ecol. Econ. 2011; 71, 80-88.
  • Yano K, Hasegawa T, Kuboi R, Komasawa I, & Tsuchido T. Characterization of surface properties of heat shock proteins for the separation using aqueous two-phase systems. J. Chem. Eng. Japan, 1994; 27(6), 808-814.
  • Zambra E, Martinet B, Brasero N, Michez D. & Rasmont P. Hyperthermic stress resistance of bumblebee males: test case of Belgian species. Apidologie 2020; 51, 911-920.
  • Zhao H, Li G, Guo D, Li H, Liu Q, Xu B.& Guo X. Response mechanisms to heat stress in bees. Apidologie 2021; 52, 388-399.
There are 78 citations in total.

Details

Primary Language English
Subjects Entomology
Journal Section Research Articles
Authors

Hossam Abou-shaara 0000-0001-7208-6526

Early Pub Date May 25, 2024
Publication Date May 29, 2024
Submission Date November 14, 2023
Acceptance Date February 7, 2024
Published in Issue Year 2024 Volume: 24 Issue: 1

Cite

Vancouver Abou-shaara H. VARIATIONS IN HEAT SHOCK PROTEINS BETWEEN DIFFERENT HONEY BEES AND BEE TAXA UTILIZING BIOINFORMATICS. U. Arı. D.-U. Bee J. 2024;24(1):38-52.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.