Research Article
BibTex RIS Cite

Apis mellifera caucasica ve Apis mellifera carnica Irklarına Ait Arı Zehirlerinin (Apitoxin) Antimikrobiyal Etkisinin Araştırılması

Year 2025, Volume: 25 Issue: 1, 43 - 52, 30.05.2025
https://doi.org/10.31467/uluaricilik.1593886

Abstract

Antimikrobiyal dirençle mücadelede yeni terapötik ajanların keşfi önem taşımaktadır. Bu çalışmada, Apis mellifera caucasica ve A. m. carnica (Hymenoptera: Apidae) alt türlerinden elde edilen apitoksinin antimikrobiyal potansiyeli, Gram-pozitif (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212), Gram-negatif (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bakteri suşları ve bir fungal patojen (Candida albicans ATCC 10231) mikroorganizmalar üzerinde in vitro olarak değerlendirilmiştir. Mayıs 2022-Nisan 2023 tarihleri arasında standardize koşullarda yetiştirilen arı kolonilerinden elektrostimülasyon tekniğiyle apitoksin ekstrakte edilmiştir. Antimikrobiyal aktivite disk difüzyon yöntemiyle değerlendirilmiş ve sonuçlar standart antibiyotiklerle (ampisilin, vankomisin, trimetoprim-sülfametoksazol ve itrakonazol) karşılaştırılarak apitoksinlerin antibiyotik eşleniği hesaplanmıştır. Her iki alt türden elde edilen apitoksin, test edilen tüm mikroorganizmalara karşı doza bağımlı inhibitör etki göstermiştir. En yüksek etki E. coli’ye karşı gözlemlenmiş olup, inhibisyon zon çapları A. m. caucasica için 16,6 ± 0,2 mm ve A. m. carnica için 17,0 ± 0,2 mm olarak ölçülmüştür (p<0.05). E. coli, E. faecalis ve P. aeruginosa üzerindeki etkilerde alt türler arasında anlamlı fark bulunmamıştır (p>0.05). Sonuçlar, apitoksinin geniş spektrumlu antimikrobiyal aktiviteye sahip potansiyel bir terapötik ajan olarak değerlendirilebileceğini göstermektedir.

Project Number

KBUBAP-22-ABP-032

References

  • Al-Ani I, Zimmermann S, Reichling J, Wink M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines (Basel). 2018;3;5(1):2, doi.org/10.3390/medicines5010002
  • Andrews J M. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy. 2001;48:5-16, doi.org/10.1093/jac/48.suppl_1.5
  • Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg, 2017;6(2):82-86, doi.org/10.5505/bsbd.2017.13002
  • Barry AL, Hoeprich PD, Saubolle MA. The antimicrobic susceptibility test: principles and practices. Lea&Febiger. 1976, doi.org/10.7326/0003-4819-87-3-388_1
  • Benton AW, Morse RA, Stewart JD. Venom collection from honey bees. Science. 1963;142(3589):228–230, doi.org/10.1126/science.142.3589.228
  • Bogdanov S. Bee venom: composition, health, medicine: a review. Peptides. 2015, p.1-20
  • Boutrin MC, Foster HA, Pentreath VW. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria. Experimental parasitology. 2008;119(2):246-251, doi.org/10.1016/j.exppara.2008.02.002
  • Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 2020;12(11):3360, doi: 10.3390/nu12113360
  • CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement (CLSI Document M100-S22). Clinical and Laboratory Standards Institute. 2012
  • Chen J, Guan SM, Sun W, Fu H. Melittin, the major pain-producing substance of bee venom. Neuroscience bulletin. 2016;32:265-272, doi:10.1007/s12264-016-0024-y
  • Crane E. Bees and beekeeping: Science, Practice and World Resources. Cornstock Publ., Ithaca, NY., USA. 1990,pp1-593, doi.org/10.1080/0005772X.1953.11094786
  • Çaprazlı T, Kekeçoğlu M. Bal Arısı Zehrinin Kompozisyonunu ve Üretim Miktarını Etkileyen Faktörler. U. Arı D./U. Bee J. 2021;21:132-145, doi.org/10.31467/uluaricilik.901279
  • Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-7, doi.org/10.1016/j.peptides.2014.09.021
  • El Mehdi I, Falcão SI, Harandou M, Boujraf S, Calhelha RC, Ferreira ICFR, Anjos O, Campos MG, Vilas-Boas M. Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics (Basel). 2021;10(12):1514, doi.org/10.3390/antibiotics10121514
  • El-Seedi H, Abd El-Wahed A, Yosri N, Musharraf SG, Chen L, Moustafa M, Zou X, Al-Mousawi S, Guo Z, Khatib A, et al. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins. 2020;12(7):451, doi.org/10.3390/toxins12070451
  • Fakhim ZK. Improved device for venom extraction. Bee World. 1998;79(1):52–56
  • Hegazi AG, Guthami FM, Gethami AF, Allah FM, Saleh AA, Fouad EA. Potential antibacterial activity of some Saudi Arabia honey. Vet World. 2017;10(2):233-237, doi.org/10.14202/vetworld.2017.233-237
  • Hwang YN, Kwon IS, Na HH, Park JS, Kim K C. Dual cytotoxic responses induced by treatment of A549 human lung cancer cells with sweet bee venom in a dose-dependent manner. Journal of Pharmacopuncture.2022;25(4):390, doi.org/10.3831/KPI.2022.25.4.390
  • Isidorov V, Zalewski A, Zambrowski G, Swiecicka I. Chemical Composition and Antimicrobial Properties of Honey Bee Venom. Molecules. 2023;28(10):4135, doi.org/10.3390/molecules28104135.
  • Jadhav VR, Aher JS, Bhagare AM, Kardel A, Lokhande D. One-Pot Hydrothermal Synthesis of Bio-Active Bee Venom Nanoparticles with Potent Anticancer Activity. 2024, doi.org/10.2139/ssrn.4756813
  • Karimi A, Ahmadi F, Parivar K, Nabiuni M, Haghighi S, Imani S, Afrouzi H. Effect of honey bee venom on lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res. 2012;11(2):671-8, doi.org/10.22037/ijpr.2012.1181
  • Lad PJ, and Shier W T. Activation of microsomal guanylate cyclase by a cytotoxic polypeptide: Melittin, Biochemical and Biophysical Research Communications. 1979;89(1):315-321, ISSN 0006-291X, doi.org/10.1016/0006-291X(79)90980-X
  • Leandro LF, Mendes CA, Casemiro LA, Vinholis AH, Cunha WR, de Almeida R, Martins C H. Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. Anais da Academia Brasileira de Ciências. 2015;87(1):147-155, doi.org/10.1590/0001-3765201520130511
  • Małek A, Kocot J, Mitrowska K, Posyniak A, Kurzepa J. Bee venom effect on glioblastoma cells viability and gelatinase secretion. Frontiers in Neuroscience. 2022;16:792970, doi.org/10.3389/fnins.2022.792970
  • Memariani H, Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol. 2020;104:6513–6526, doi.org/10.1007/s00253-020-10701-0
  • Mizrahi A, Lensky Y. (Eds.). Bee products: properties, applications, and apitherapy. Springer Science & Business Media. 1997. https://books.google.com.tr/books?id=x0PjBwAAQBAJ&printsec=frontcover&hl=tr
  • Moreno M. Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins. 2015;7:1126–1150. doi.org/10.3390/toxins7041126
  • Münstedt K, Bogdanov S. Bee products and their potential use in modern medicine. Journal of ApiProduct and ApiMedical Science. 2009;1(3):57-63,. doi: 10.3896/IBRA.4.01.3.01
  • O'Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. 2014. https://wellcomecollection.org/works/rdpck35v/items
  • Ownby CL, Powell JR, Jiang MS, Fletcher JE. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon. 1997;35(1):67-80, doi: 10.1016/s0041-0101(96)00078-5
  • Park JH, Kim KH, Kim SJ, Lee WR, Lee KG, Park KK. Bee Venom Protects Hepatocytes from Tumor Necrosis Factor-alpha and Actinomycin D. Archives of Pharmacal Research. 2010;33(2):215-223, doi.org/10.1007/s12272-010-0205-6
  • Patel JB, Cockerill FR, Bradford PA, Eliopoulos GM, Hindler JA, Jenkins SG & Zimmer, BL. M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. Clinical Laboratory Standards Institute. 2015; 35(2)
  • Ruttner F. Biogeography and Taxonomy of Honeybees. Springer-Verlag, Berlin, 1988, doi.org/10.1007/978-3-642-72649-1_6
  • Schumacher MJ, Schmidt JO, Egen WB. Lethality of "killer" bee stings. Nature. 1989;337:413, doi.org/10.1038/337413a0
  • Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom
  • Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals. 2024;17(9):1211, doi.org/10.3390/ph17091211
  • Surendra NS, Jayaram GN and Reddy MS. Antimicrobial activity of crude venom extracts in honeybees (Apis cerana, Apis dorsata, Apis florea) tested against selected pathogens. African Journal of Microbiology Research. 2011;5(18):2765-2772, doi.org/10.5897/AJMR11.593
  • Tanuğur-Samancı A.E, Kekeçoğlu M. An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. PLoS One. 2021;16(7): e0255161, doi.org/10.1371/journal.pone.0255161
  • Tanuwidjaja I, Svečnjak L, Gugić D, Levanić M, Fuka MM. Chemical Profiling and Antimicrobial Properties of HoneyBee (Apis mellifera L.) Venom. Molecules. 2021;26(10):3049, https://doi.org/10.3390/molecules26103049
  • Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, and Ling C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IκBα kinase-NFκB. Journal of Biological Chemistry. 2009;284(6):3804-3813, doi.org/10.1074/jbc.M807191200
  • Wehbe R, Frangieh J, Rima M, Obeid D El, Sabatier JM, Fajloun Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019;24(16):2997.24, doi.org/10.3390/molecules24162997
  • WHO. World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240062702, 2022, (accessed: 11 October 2024) .

INVESTIGATION OF THE ANTIMICROBIAL EFFECT OF HONEYBEE VENOMS (APITOXIN) FROM APIS MELLIFERA CAUCASICA AND APIS MELLIFERA CARNICA

Year 2025, Volume: 25 Issue: 1, 43 - 52, 30.05.2025
https://doi.org/10.31467/uluaricilik.1593886

Abstract

The discovery of new therapeutic agents is crucial in the fight against antimicrobial resistance. The antimicrobial potential of apitoxin from Apis mellifera caucasica and A. m. carnica (Hymenoptera: Apidae) was tested in vitro against Gram-positive (Staphylococcus aureus ATCC-25923, Enterococcus faecalis ATCC-29212), Gram-negative (Escherichia coli ATCC-25922, Pseudomonas aeruginosa ATCC-27853) bacterial strains and a fungal pathogen (Candida albicans ATCC-10231). Using an electro stimulation technique, Apitoxin was extracted from honey bee colonies under standardized conditions between May 2022 and April 2023. The antimicrobial activity was evaluated using the disk diffusion method and the results were compared with standard antibiotics (ampicillin, vancomycin, trimethoprim-sulfamethoxazole, itraconazole) to calculate the antibiotic equivalence of the apitoxins. Apitoxin from both subspecies showed dose-dependent inhibitory effects against all microorganisms tested. The highest activity was observed against E. coli, with inhibition zone diameters of 16.6±0.2 mm for A. m. caucasica and 17.0±0.2 mm for A. m. carnica (p<0.05). No significant differences were found between subspecies in their effects on E.coli, E.faecalis, and P.aeruginosa (p>0.05). The results indicate that apitoxin has a broad spectrum of antimicrobial activity and could be used as a therapeutic agent.

Project Number

KBUBAP-22-ABP-032

References

  • Al-Ani I, Zimmermann S, Reichling J, Wink M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines (Basel). 2018;3;5(1):2, doi.org/10.3390/medicines5010002
  • Andrews J M. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy. 2001;48:5-16, doi.org/10.1093/jac/48.suppl_1.5
  • Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg, 2017;6(2):82-86, doi.org/10.5505/bsbd.2017.13002
  • Barry AL, Hoeprich PD, Saubolle MA. The antimicrobic susceptibility test: principles and practices. Lea&Febiger. 1976, doi.org/10.7326/0003-4819-87-3-388_1
  • Benton AW, Morse RA, Stewart JD. Venom collection from honey bees. Science. 1963;142(3589):228–230, doi.org/10.1126/science.142.3589.228
  • Bogdanov S. Bee venom: composition, health, medicine: a review. Peptides. 2015, p.1-20
  • Boutrin MC, Foster HA, Pentreath VW. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria. Experimental parasitology. 2008;119(2):246-251, doi.org/10.1016/j.exppara.2008.02.002
  • Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 2020;12(11):3360, doi: 10.3390/nu12113360
  • CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement (CLSI Document M100-S22). Clinical and Laboratory Standards Institute. 2012
  • Chen J, Guan SM, Sun W, Fu H. Melittin, the major pain-producing substance of bee venom. Neuroscience bulletin. 2016;32:265-272, doi:10.1007/s12264-016-0024-y
  • Crane E. Bees and beekeeping: Science, Practice and World Resources. Cornstock Publ., Ithaca, NY., USA. 1990,pp1-593, doi.org/10.1080/0005772X.1953.11094786
  • Çaprazlı T, Kekeçoğlu M. Bal Arısı Zehrinin Kompozisyonunu ve Üretim Miktarını Etkileyen Faktörler. U. Arı D./U. Bee J. 2021;21:132-145, doi.org/10.31467/uluaricilik.901279
  • Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-7, doi.org/10.1016/j.peptides.2014.09.021
  • El Mehdi I, Falcão SI, Harandou M, Boujraf S, Calhelha RC, Ferreira ICFR, Anjos O, Campos MG, Vilas-Boas M. Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics (Basel). 2021;10(12):1514, doi.org/10.3390/antibiotics10121514
  • El-Seedi H, Abd El-Wahed A, Yosri N, Musharraf SG, Chen L, Moustafa M, Zou X, Al-Mousawi S, Guo Z, Khatib A, et al. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins. 2020;12(7):451, doi.org/10.3390/toxins12070451
  • Fakhim ZK. Improved device for venom extraction. Bee World. 1998;79(1):52–56
  • Hegazi AG, Guthami FM, Gethami AF, Allah FM, Saleh AA, Fouad EA. Potential antibacterial activity of some Saudi Arabia honey. Vet World. 2017;10(2):233-237, doi.org/10.14202/vetworld.2017.233-237
  • Hwang YN, Kwon IS, Na HH, Park JS, Kim K C. Dual cytotoxic responses induced by treatment of A549 human lung cancer cells with sweet bee venom in a dose-dependent manner. Journal of Pharmacopuncture.2022;25(4):390, doi.org/10.3831/KPI.2022.25.4.390
  • Isidorov V, Zalewski A, Zambrowski G, Swiecicka I. Chemical Composition and Antimicrobial Properties of Honey Bee Venom. Molecules. 2023;28(10):4135, doi.org/10.3390/molecules28104135.
  • Jadhav VR, Aher JS, Bhagare AM, Kardel A, Lokhande D. One-Pot Hydrothermal Synthesis of Bio-Active Bee Venom Nanoparticles with Potent Anticancer Activity. 2024, doi.org/10.2139/ssrn.4756813
  • Karimi A, Ahmadi F, Parivar K, Nabiuni M, Haghighi S, Imani S, Afrouzi H. Effect of honey bee venom on lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res. 2012;11(2):671-8, doi.org/10.22037/ijpr.2012.1181
  • Lad PJ, and Shier W T. Activation of microsomal guanylate cyclase by a cytotoxic polypeptide: Melittin, Biochemical and Biophysical Research Communications. 1979;89(1):315-321, ISSN 0006-291X, doi.org/10.1016/0006-291X(79)90980-X
  • Leandro LF, Mendes CA, Casemiro LA, Vinholis AH, Cunha WR, de Almeida R, Martins C H. Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. Anais da Academia Brasileira de Ciências. 2015;87(1):147-155, doi.org/10.1590/0001-3765201520130511
  • Małek A, Kocot J, Mitrowska K, Posyniak A, Kurzepa J. Bee venom effect on glioblastoma cells viability and gelatinase secretion. Frontiers in Neuroscience. 2022;16:792970, doi.org/10.3389/fnins.2022.792970
  • Memariani H, Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol. 2020;104:6513–6526, doi.org/10.1007/s00253-020-10701-0
  • Mizrahi A, Lensky Y. (Eds.). Bee products: properties, applications, and apitherapy. Springer Science & Business Media. 1997. https://books.google.com.tr/books?id=x0PjBwAAQBAJ&printsec=frontcover&hl=tr
  • Moreno M. Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins. 2015;7:1126–1150. doi.org/10.3390/toxins7041126
  • Münstedt K, Bogdanov S. Bee products and their potential use in modern medicine. Journal of ApiProduct and ApiMedical Science. 2009;1(3):57-63,. doi: 10.3896/IBRA.4.01.3.01
  • O'Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. 2014. https://wellcomecollection.org/works/rdpck35v/items
  • Ownby CL, Powell JR, Jiang MS, Fletcher JE. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon. 1997;35(1):67-80, doi: 10.1016/s0041-0101(96)00078-5
  • Park JH, Kim KH, Kim SJ, Lee WR, Lee KG, Park KK. Bee Venom Protects Hepatocytes from Tumor Necrosis Factor-alpha and Actinomycin D. Archives of Pharmacal Research. 2010;33(2):215-223, doi.org/10.1007/s12272-010-0205-6
  • Patel JB, Cockerill FR, Bradford PA, Eliopoulos GM, Hindler JA, Jenkins SG & Zimmer, BL. M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. Clinical Laboratory Standards Institute. 2015; 35(2)
  • Ruttner F. Biogeography and Taxonomy of Honeybees. Springer-Verlag, Berlin, 1988, doi.org/10.1007/978-3-642-72649-1_6
  • Schumacher MJ, Schmidt JO, Egen WB. Lethality of "killer" bee stings. Nature. 1989;337:413, doi.org/10.1038/337413a0
  • Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom
  • Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals. 2024;17(9):1211, doi.org/10.3390/ph17091211
  • Surendra NS, Jayaram GN and Reddy MS. Antimicrobial activity of crude venom extracts in honeybees (Apis cerana, Apis dorsata, Apis florea) tested against selected pathogens. African Journal of Microbiology Research. 2011;5(18):2765-2772, doi.org/10.5897/AJMR11.593
  • Tanuğur-Samancı A.E, Kekeçoğlu M. An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. PLoS One. 2021;16(7): e0255161, doi.org/10.1371/journal.pone.0255161
  • Tanuwidjaja I, Svečnjak L, Gugić D, Levanić M, Fuka MM. Chemical Profiling and Antimicrobial Properties of HoneyBee (Apis mellifera L.) Venom. Molecules. 2021;26(10):3049, https://doi.org/10.3390/molecules26103049
  • Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, and Ling C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IκBα kinase-NFκB. Journal of Biological Chemistry. 2009;284(6):3804-3813, doi.org/10.1074/jbc.M807191200
  • Wehbe R, Frangieh J, Rima M, Obeid D El, Sabatier JM, Fajloun Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019;24(16):2997.24, doi.org/10.3390/molecules24162997
  • WHO. World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240062702, 2022, (accessed: 11 October 2024) .
There are 42 citations in total.

Details

Primary Language English
Subjects Entomology, Traditional, Complementary and Integrative Medicine (Other)
Journal Section Research Articles
Authors

Mehmet Çolak 0000-0001-6879-6701

Esra Taş 0000-0003-0652-5847

Project Number KBUBAP-22-ABP-032
Early Pub Date May 26, 2025
Publication Date May 30, 2025
Submission Date November 30, 2024
Acceptance Date March 1, 2025
Published in Issue Year 2025 Volume: 25 Issue: 1

Cite

Vancouver Çolak M, Taş E. INVESTIGATION OF THE ANTIMICROBIAL EFFECT OF HONEYBEE VENOMS (APITOXIN) FROM APIS MELLIFERA CAUCASICA AND APIS MELLIFERA CARNICA. U. Arı. D.-U. Bee J. 2025;25(1):43-52.

Important Note: Since the author-reviewer information is kept confidential on both sides in our Journal, both the author and the reviewer must upload the document to the system after removing their personal information in the review document section. Authors should state that AI has not been used to prepare the manuscript, except for the references.

Note: Authors can also use the homepage of our Journal at https://uadubj.uludag.edu.tr/

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.