Review
BibTex RIS Cite

STRATEGIES AND MECHANISMS OF PLANT-MICROBIOME-POLLINATOR COADAPTATION

Year 2025, Volume: 25 Issue: 1, 171 - 196, 30.05.2025
https://doi.org/10.31467/uluaricilik.1675598

Abstract

Plant-pollinator interactions showcase mutualistic coevolution, but the role of microorganisms in these relationships is often overlooked. Nectar-dwelling microorganisms, mainly yeasts and bacteria, significantly influence floral chemistry, pollinator behavior, and plant reproduction. These microorganisms alter nectar’s sugar content, amino acid profiles, pH, and scent emissions, shaping pollinator preferences. For example, the yeast Metschnikowia reukaufii produces fruity esters that attract bumble bees, while some bacteria lower pH, repelling honey bees. Pollinators spread these microorganisms between flowers, creating a feedback loop that shapes microbial communities and drives coevolution. Beyond nectar, microorganisms' impact on thermal regulation through metabolic heat, pollen health, and pollinator gut microbiomes. Specialized bacteria like Rosenbergiella nectarea and Acinetobacter spp. thrive in nectar’s high-sugar environment, while pollinator microorganisms, such as Lactobacillus kunkeei, protect honey bees from pathogens. Microbial diversity varies by region, with tropical flowers hosting richer communities than temperate ones. This review highlights how microorganisms act as key players in plant-pollinator networks, boosting pollinator nutrition, immunity, and foraging efficiency. It explores microbial spread, competition, and chemical influence, calling for studies that blend microbiology, ecology, and evolution. Understanding these interactions is vital for predicting how climate change and habitat loss threaten pollination, affecting agriculture and biodiversity.

Ethical Statement

Ethics committee approval is not required.

Supporting Institution

Koltsov Institute of Developmental Biology of Russian academy of Sciences

Project Number

Russian Science Foundation (RSF) grant 24-16-00179

Thanks

Government basic research program in IDB RAS No. 0088-2024-0009

References

  • Adler L. S. Alkaloid Uptake Increases Fitness in a Hemiparasitic Plant via Reduced Herbivory and Increased Pollination. The American naturalist, 2000; 156(1): 92-99. https://doi.org/10.1086/303374
  • Adler L. S., Irwin R. E., McArt S. H., & Vannette R. L. Floral traits affecting the transmission of beneficial and pathogenic pollinator–associated microbes. Curr Opin Insect Sci, 2020; 44: 1-7. https://doi.org/10.1016/j.cois.2020.08.006
  • Aizenberg-Gershtein Y., Izhaki I., & Halpern M. Do Honey bees Shape the Bacterial Community Composition in Floral Nectar? Plos One, 2013; 8(7): e67556. https://doi.org/10.1371/journal.pone.0067556
  • Aleklett K., Hart M., & Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany, 2014; 92(4): 253-266. https://doi.org/10.1139/cjb-2013-0166
  • Alexander H., & Antonovics J. Disease spread and population dynamics of anther‐smut infection of Silene alba caused by the fungus Ustilago violacea. Journal of Ecology, 1988; 76(1): 91-104. https://doi.org/10.2307/2260456
  • Álvarez-Pérez S., & Herrera C. M. Composition, richness and non-concurrent fungal communities in floral nectar of Mediterranean plants. FEMS Microbiology Ecology, 2013; 83(3): 685-699. https://doi.org/10.1111/1574-6941.12027
  • Álvarez-Pérez S., Herrera C. M., & de Vega C. Zooming-in on floral nectar: A first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiology Ecology, 2012; 80(3): 591-602. https://doi.org/10.1111/j.1574-6941.2012.01329.x
  • Álvarez-Pérez S., Lievens B., & Fukami T. Yeast-bacterium interactions: the next frontier in nectar research. Trends in Plant Science, 2019; 24(5): 393-401. https://doi.org/10.1016/j.tplants.2019.01.012
  • Álvarez-Pérez S., Lievens B., Jacquemyn H., & Herrera C. M. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. International Journal of Systematic and Evolutionary Microbiology, 2013; 63(Pt 4): 1532-1539. https://doi.org/10.1099/ijs.0.043489-0
  • Álvarez-Pérez S., Tsuji K., Donald M., Van Assche A., Vannette R. L., Herrera C. M., Jacquemyn H., Fukami T., & Lievens B. Nitrogen assimilation varies among clades of nectar- and insect-associated Acinetobacters. Microbial Ecology, 2021; 81(4): 990-1003. https://doi.org/10.1007/s00248-020-01671-x
  • Amoo S. O., Aremu A. O., & Van Staden J. Unraveling the medicinal potential of South African Aloe species. Journal of Ethnopharmacology, 2014; 153(1): 19-41. https://doi.org/10.1016/j.jep.2014.01.036
  • An S. Q., Potnis N., Dow M., Vorhölter F. J., He Y. Q., Becker A., Teper D., Li Y., Wang N., Bleris L., & Tang J. L. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, 2020; 44(1): 1-32. https://doi.org/10.1093/femsre/fuz024
  • Anderson K. E., Sheehan T. H., Mott B. M., Maes P., Snyder L., Schwan M. R., Walton A., Jones B. M., & Corby-Harris V. Microbial Ecology of the Hive and Pollination Landscape: Bacterial Associates from Floral Nectar, the Alimentary Tract and Stored Food of Honey Bees (Apis mellifera). Plos One, 2013; 8(12): e83125. https://doi.org/10.1371/journal.pone.0083125
  • Aremu A. O., & Van Staden J. The genus Tulbaghia (Alliaceae) – A review of its ethnobotany, pharmacology, phytochemistry and conservation needs. Journal of Ethnopharmacology, 2013; 149(2): 387-400. https://doi.org/10.1016/j.jep.2013.06.046
  • Arredondo D., Castelli L., Porrini M. P., Garrido P. M., Eguaras M. J., Zunino P., & Antúnez K. Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Benef Microbes, 2018; 9(2): 279-290. https://doi.org/10.3920/bm2017.0075
  • Baker H. G., & Baker I. Floral nectar constituents in relation to pollinator type. Handbook of Experimental Pollination Biology, 1983: 117-141.
  • Baker H. G., & Baker I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Plant Sciences, 1990; 39(1-2): 157-166. https://doi.org/10.1080/0021213X.1990.10677140
  • Barnes K., Nicolson S. W., & van Wyk B. E. Nectar sugar composition in Erica. Biochemical Systematics and Ecology, 1995; 23(4): 419-423. https://doi.org/10.1016/0305-1978(95)00024-O
  • Belisle M., Peay K. G., & Fukami T. Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microbial Ecology, 2012; 63(4): 711-718. https://doi.org/10.1007/s00248-011-9975-8
  • Biere A., & Honders S. C. Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytologist, 2006; 169(4): 719-727. https://doi.org/10.1111/j.1469-8137.2005.01511.x
  • Boutroux L. Conservation des ferments alcooliques dans la nature. Annales des Sci Naturelles, Série IV, Botanique, 1884; 17: 144-209.
  • Brown M., Downs C. T., & Johnson S. D. Concentration-dependent sugar preferences of the malachite sunbird (Nectarinia famosa). Ornithology, 2010; 127(1): 151-155. https://doi.org/10.1525/auk.2009.09054
  • Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel), 2021; 10(5). https://doi.org/10.3390/antibiotics10050551
  • Brunner F. S., Schmid-Hempel P., & Barribeau S. M. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proceedings of the Royal Society B: Biological Sciences, 2014; 281(1786): 20140128. https://doi.org/10.1098/rspb.2014.0128
  • Brysch-Herzberg M. Ecology of yeasts in plant-bumble bee mutualism in Central Europe. FEMS Microbiology Ecology, 2004; 50(2): 87-100. https://doi.org/10.1016/j.femsec.2004.06.003
  • Burdon R. C. F., Junker R. R., Scofield D. G., & Parachnowitsch A. L. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology, 2018; 28(1): 11-19. https://doi.org/10.1007/s00049-018-0252-x
  • Buwa L. V., & Van Staden J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. Journal of Ethnopharmacology, 2006; 103(1): 139-142. https://doi.org/10.1016/j.jep.2005.09.020
  • Canto A., & Herrera C. M. Micro-organisms behind the pollination scenes: Microbial imprint on floral nectar sugar variation in a tropical plant community. Annals of Botany, 2012; 110(6): 1173-1183. https://doi.org/10.1093/aob/mcs183
  • Canto A., Herrera C. M., & Rodriguez R. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits. PeerJ, 2017; 5: e3517. https://doi.org/10.7717/peerj.3517
  • Canto A., Herrera C. M., García I. M., García M., & Bazaga P. Comparative effects of two species of floricolous Metschnikowia yeasts on nectar. Anales Del Jardín Botánico de Madrid, 2015; 72(1): e019. https://doi.org/10.3989/ajbm.2396
  • Canto A., Herrera C. M., Medrano M., Pérez R., & García I. M. Pollinator foraging modifies nectar sugar composition in Helleborus foetidus (Ranunculaceae): An experimental test. American Journal of Botany, 2008; 95(3): 315-320. https://doi.org/10.3732/ajb.95.3.315
  • Carter C., & Thornburg R. W. Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 2004; 9(7): 320-324. https://doi.org/10.1016/j.tplants.2004.05.008
  • Carter C., Graham R. A., & Thornburg R. W. Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology, 1999; 41(2): 207-216. https://doi.org/10.1023/A:1006363508648
  • Christensen S. M., Munkres I., & Vannette R. L. Nectar bacteria stimulate pollen germination and bursting to enhance microbial fitness. Current Biology, 2021; 31(19): 4373-4380.e4376. https://doi.org/10.1016/j.cub.2021.07.016
  • Colda A., Bossaert S., Verreth C., Vanhoutte B., Honnay O., Keulemans W., & Lievens B. Inoculation of pear flowers with Metschnikowia reukaufii and Acinetobacter nectaris enhances attraction of honeybees and hoverflies, but does not increase fruit and seed set. Plos One, 2021; 16(4): e0250203. https://doi.org/10.1371/journal.pone.0250203
  • Corbet S. A., Willmer P. G., Beament J. W. L., Unwin D. M., & Prŷs-Jones O. E. Post-secretory determinants of sugar concentration in nectar. Plant, Cell & Environment, 1979; 2(4): 293-308. https://doi.org/10.1111/j.1365-3040.1979.tb00084.x
  • Corby-Harris V., Maes P., & Anderson K. E. The bacterial communities associatedforagers. Plos One, 2014; 9(4): e95056. https://doi.org/10.1371/journal.pone.0095056
  • Crotti E., Rizzi A., Chouaia B., Ricci I., Favia G., Alma A., Sacchi L., Bourtzis K., Mandrioli M., Cherif A., Bandi C., & Daffonchio D. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects. Applied and Environmental Microbiology, 2010; 76(21): 6963-6970. https://doi.org/10.1128/aem.01336-10
  • Cullen N. P., Fetters A. M., & Ashman T. L. Integrating microbes into pollination. Curr Opin Insect Sci, 2021; 44: 48-54. https://doi.org/10.1016/j.cois.2020.11.002
  • de Vega C., & Herrera C. M. Relationships among nectar-dwelling yeasts, flowers and ants: patterns and incidence on nectar traits. Oikos, 2012; 121(11): 1878-1888. https://doi.org/10.1111/j.1600-0706.2012.20295.x
  • de Vega C., Albaladejo R. G., Guzmán B., Steenhuisen S., Johnson S. D., Herrera C. M., & Lachance M. Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea f.a. sp. nov., and Wickerhamiella natalensis f.a. sp. nov. from South African flowers and pollinators, and transfer of related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Research, 2017; 17(5). https://doi.org/10.1093/femsyr/fox054
  • de Vega C., Álvarez-Pérez S., Albaladejo R. G., Steenhuisen S. L., Lachance M. A., Johnson S. D., & Herrera C. M. The role of plant-pollinator interactions in structuring nectar microbial communities. Journal of Ecology, 2021; 109(9): 3379-3395. https://doi.org/10.1111/1365-2745.13726
  • de Vega C., Álvarez-Pérez S., Albaladejo R. G., Steenhuisen S., Lachance M., Johnson S. D., & Herrera C. M. The role of plant-pollinator interactions in structuring nectar microbial communities. Journal of Ecology, 2021; 109(9): 3379-3395. https://doi.org/10.1111/1365-2745.13726
  • de Vega C., Guzman B., Steenhuisen S. L., Johnson S. D., Herrera C. M., & Lachance M. A. Metschnikowia drakensbergensis sp. nov. and Metschnikowia caudata sp. nov., endemic yeasts associated with Protea flowers in South Africa. International Journal of Systematic and Evolutionary Microbiology, 2014; 64(11): 3724-3732. https://doi.org/10.1099/ijs.0.068445-0
  • de Vega C., Herrera C. M., & Johnson S. D. Yeasts in floral nectar of some South African plants: quantification and associations with pollinator type and sugar concentration. South African Journal of Botany, 2009; 75(4): 798-806. https://doi.org/10.1016/j.sajb.2009.07.016
  • Dhami M. K., Hartwig T., & Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proceedings of the Royal Society B: Biological Sciences, 2016; 283(1840): 20161455. https://doi.org/10.1098/rspb.2016.1455
  • Dhami M. K., Hartwig T., Letten A. D., Banf M., & Fukami T. Genomic diversity of a nectar yeast clusters into metabolically, but not geographically, distinct lineages. Molecular Ecology, 2018; 27(8): 2067-2076. https://doi.org/10.1111/mec.14535
  • Dolezal A. G., & Toth A. L. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci, 2018; 26: 114-119. https://doi.org/10.1016/j.cois.2018.02.006
  • Eisikowitch D., Lachance M. A., Kevan P. G., Willis S., & Collins-Thompson D. L. The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Canadian Journal of Botany, 1990; 68(5): 1163-1165. https://doi.org/10.1139/b90-147
  • Engel P., Martinson V. G., & Moran N. A. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109(27): 11002-11007. https://doi.org/10.1073/pnas.1202970109
  • Farré-Armengol G., Filella I., Llusia J., & Peñuelas J. Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions. Trends in Plant Science, 2016; 21(10): 854-860. https://doi.org/10.1016/j.tplants.2016.06.005
  • Figueroa L. L., Blinder M., Grincavitch C., Jelinek A., Mann E. K., Merva L. A., Metz L. E., Zhao A. Y., Irwin R. E., McArt S. H., & Adler L. S. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B: Biological Sciences, 2019; 286(1903): 20190603. https://doi.org/10.1098/rspb.2019.0603
  • Fine J. D., Shpigler H. Y., Ray A. M., Beach N. J., Sankey A. L., Cash-Ahmed A., Huang Z. Y., Astrauskaite I., Chao R., Zhao H., & Robinson G. E. Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. Plos One, 2018; 13(9): e0203444. https://doi.org/10.1371/journal.pone.0203444
  • Folly A. J., Barton-Navarro M., & Brown M. Exposure to nectar-realistic sugar concentrations negatively impacts the ability of the trypanto infect its bumble bee host. Ecological Entomology, 2020; 45(6): 1495-1498. https://doi.org/10.1111/een.12901
  • Fridman S., Izhaki I., Gerchman Y., & Halpern M. Bacterial communities in floral nectar. Environmental Microbiology Reports, 2012; 4(1): 97-104. https://doi.org/10.1111/j.1758-2229.2011.00309.x
  • Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 2015; 46(1): 1-23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
  • Gegear R. J., & Thomson J. D. Does the flower constancy of bumble bees reflect foraging economics? Ethology, 2004; 110(10): 793-805. https://doi.org/10.1111/j.1439-0310.2004.01010.x
  • Golonka A. M., Johnson B. O., Freeman J., & Hinson D. W. Impact of nectarivorous yeasts on Silene caroliniana's scent. Eastern Biologist, 2014; 3: 1-26.
  • Good A. P., Gauthier M. P. L., Vannette R. L., & Fukami T. Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. Plos One, 2014; 9(1): e86494. https://doi.org/10.1371/journal.pone.0086494
  • Grund-Mueller N., Ruedenauer F. A., Spaethe J., & Leonhardt S. D. Adding amino acids to a sucrose diet is not sufficient to support longevity of adult bumble bees. Insects, 2020; 11(4): 247. https://doi.org/10.3390/insects11040247
  • Hammer T. J., Le E., Martin A. N., & Moran N. A. The gut microbiota of bumble bees. Insectes Sociaux, 2021; 68(4): 287-301. https://doi.org/10.1007/s00040-021-00837-1
  • Heiduk A., Brake I., Shuttleworth A., & Johnson S. D. 'Bleeding' flowers of Ceropegia gerrardii (Apocynaceae-asclepiadoideae) mimic wounded insects to attract kleptoparasitic fly pollinators. New Phytologist, 2023; 239(4): 1490-1504. https://doi.org/10.1111/nph.18888
  • Herrera C. M. Scavengers that fit beneath a microscope lens. Ecology, 2017; 98(10): 2725-2726. https://doi.org/10.1002/ecy.1874
  • Herrera C. M., & Pozo M. I. Nectar yeasts warm the flowers of a winter-blooming plant. Proceedings of the Royal Society B: Biological Sciences, 2010; 277(1689): 1827-1834. https://doi.org/10.1098/rspb.2009.2252
  • Herrera C. M., Canto A., Pozo M. I., & Bazaga P. Inhospitable sweetness: Nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proceedings of the Royal Society B: Biological Sciences, 2010; 277(1682): 747-754. https://doi.org/10.1098/rspb.2009.1485
  • Herrera C. M., De Vega C., Canto A., & Pozo M. I. Yeasts in floral nectar: A quantitative survey. Annals of Botany, 2009; 103(9): 1415-1423. https://doi.org/10.1093/aob/mcp026
  • Herrera C. M., García I. M., & Pérez R. Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 2008; 89(9): 2369-2376. https://doi.org/10.1890/08-0241.1
  • Herrera C. M., Pozo M. I., & Medrano M. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology, 2013; 94(2): 273-279. https://doi.org/10.1890/12-0595.1
  • Hietaranta E., Juottonen H., & Kytöviita M. M. Honey bees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia, 2022; 201(1): 59-72. https://doi.org/10.1007/s00442-022-05285-7
  • Hinton D., & Bacon C. The distribution and ultrastructure of the endophyte of toxic tall fescue. Canadian Journal of Botany, 1985; 63(1): 36-42. https://doi.org/10.1139/b85-006
  • Hodgson S., Cates C., Hodgson J., Morley N., Sutton B., & Gange A. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution, 2014; 4(8): 1199-1208. https://doi.org/10.1002/ece3.953
  • Hua S. S. T., Beck J. J., Sarreal S. B. L., & Gee W. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res, 2014; 30(2): 71-78. https://doi.org/10.1007/s12550-014-0189-z
  • Huang M., Sanchez-Moreiras A. M., Abel C., Sohrabi R., Lee S., Gershenzon J., & Tholl D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (e)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 2012; 193(4): 997-1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x
  • lyasov R., Boguslavsky D., Ilyasova A., Sattarov V., & Danilenko V. A multifaceted bioactivity of honey: Interactions between bees, plants and microorganisms. Uludağ Arıcılık Dergisi, 2024; 24(2): 356-385. https://doi.org/10.31467/uluaricilik.1511847
  • Jacquemyn H., Lenaerts M., Brys R., Willems K., Honnay O., & Lievens B. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. Plos One, 2013; 8(3): e56917. https://doi.org/10.1371/journal.pone.0056917
  • Jersáková J., Johnson S. D., & Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biological Reviews of the Cambridge Philosophical Society, 2006; 81(2): 219-235. https://doi.org/10.1017/S1464793105006986
  • Johnson S. D. Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behavior. Biological Journal of the Linnean Society, 2000; 71(1): 119-132. https://doi.org/10.1111/j.1095-8312.2000.tb01246.x
  • Junker R. R., Romeike T., Keller A., & Langen D. Density-dependent negative responses by bumble bees to bacteria isolated from flowers. Apidologie, 2014; 45(4): 467-477. https://doi.org/10.1007/s13592-013-0262-1
  • Keller A., McFrederick Q. S., Dharampal P., Steffan S., Danforth B. N., & Leonhardt S. D. (More than) Hitchhikers through the network: The shared microbiome of bees and flowers. Curr Opin Insect Sci, 2021; 44: 8-15. https://doi.org/10.1016/j.cois.2020.09.007
  • Khan A., Zhao Y., & Korban S. Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen Erwinia amylovora, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter, 2012; 30(2): 1-14. https://doi.org/10.1007/s11105-011-0334-1.
  • Kim D. R., Cho G., Jeon C. W., Weller D. M., Thomashow L. S., Paulitz T. C., & Kwak Y. S. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat Commun, 2019; 10(1): 4802. https://doi.org/10.1038/s41467-019-12785-3.
  • Kim P. S., Shin N. R., Kim J. Y., Yun J. H., Hyun D. W., & Bae J. W. Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera. Journal of Microbiology, 2014; 52(8): 639-645. https://doi.org/10.1007/s12275-014-4078-0.
  • Klaps J. Analysis of yeast diversity in floral microhabitats from Metrosideros polymorpha Gaud. KU Leuven. Leuven, 2019, Pages. Retrieved from URL| Available rom Database Provider Name of Database database.| (Document Number)
  • Klaps J., Lievens B., & Álvarez-Pérez S. Towards a better understanding of the role of nectar-inhabiting yeasts in plant-animal interactions. Fungal Biology and Biotechnology, 2020; 7: 1. https://doi.org/10.1186/s40694-019-0091-8
  • Koch H., Woodward J., Langat M. K., Brown M. J. F., & Stevenson P. C. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumble bee Parasite. Current Biology, 2019; 29(20): 3494-3500.e3495. https://doi.org/10.1016/j.cub.2019.08.037.
  • Lachance M. A., Ewing C. P., Bowles J. M., & Starmer W. T. Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. International Journal of Systematic and Evolutionary Microbiology, 2005; 55(3): 1369-1377. https://doi.org/10.1099/ijs.0.63615-0.
  • Lachance M. A., Vale H. M. M., Sperandio E. M., Carvalho A. O. S., Santos A. R. O., Grondin C., Jacques N., Casaregola S., & Rosa C. A. Wickerhamiella dianesei f.a., sp. nov. and Wickerhamiella kurtzmanii f.a., sp. nov., two yeast species isolated from plants and insects. International Journal of Systematic and Evolutionary Microbiology, 2018; 68(10): 3351-3355. https://doi.org/10.1099/ijsem.0.003000.
  • Lachance M., Starmer W., Rosa C., Bowles J., Barker J., & Janzen D. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research, 2001; 1(1): 1-8. https://doi.org/10.1016/s1567-1356(00)00003-9.
  • Lara C., & Ornelas J. F. Hummingbirds as vectors of fungal spores in Moussonia deppeana (Gesneriaceae): Taking advantage of a mutualism? American Journal of Botany, 2003; 90(2): 260-267. https://doi.org/10.3732/ajb.90.2.262
  • Lee F. J., Rusch D. B., Stewart F. J., Mattila H. R., & Newton I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environmental Microbiology, 2014; 17(3): 796-815. https://doi.org/10.1111/1462-2920.12526
  • Lenaerts M., Álvarez-Pérez S., De Vega C., Van Assche A., Johnson S. D., Willems K. A., Herrera C. M., Jacquemyn H., & Lievens B. Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Systematic and Applied Microbiology, 2014; 37(6): 402-411. https://doi.org/10.1016/j.syapm.2014.03.002
  • Lenaerts M., Goelen T., Paulussen C., Herrera-Malaver B., Steensels J., Van Den Ende W., Verstrepen K. J., Wäckers F., Jacquemyn H., Lievens B., & Manson J. Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Functional Ecology, 2017; 31(11): 2061-2069. https://doi.org/10.1111/1365-2435.12933
  • Lignon V. A., Mas F., Jones E. E., Kaiser C., & Dhami M. K. The floral interface: a playground for interactions between insect pollinators, microbes, and plants. New Zealand Journal of Zoology, 2024; 52(2): 218-237. https://doi.org/10.1080/03014223.2024.2353285
  • Lin H., & Winston M. L. The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). The Canadian Entomologist, 1998; 130(6): 883-891. https://doi.org/10.4039/Ent130883-6
  • Mallinger R. E., & Prasifka J. R. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. Journal of Applied Entomology, 2017; 141(7): 561-573. https://doi.org/10.1111/jen.12375
  • Manirajan B. A., Ratering S., Rusch V., Schwiertz A., Geissler-Plaum R., Cardinale M., & Schnell S. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environmental Microbiology, 2016; 18(12): 5161-5174. https://doi.org/10.1111/1462-2920.13524
  • Martin V. N., Schaeffer R. N., & Fukami T. Potential effects of nectar microbes on pollinator health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022; 377(1853): 20210155. https://doi.org/10.1098/rstb.2021.0155
  • Massoni J., Bortfeld-Miller M., Jardillier L., Salazar G., Sunagawa S., & Vorholt J. A. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J, 2019; 14(1): 245-258. https://doi.org/10.1038/s41396-019-0531-8
  • McCormack P. J., Wildman H. G., & Jeffries P. Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeast-like fungi. Applied and Environmental Microbiology, 1994; 60(3): 927-931. https://doi.org/10.1128/aem.60.3.927-931.1994
  • McFrederick Q. S., Thomas J. M., Neff J. L., Vuong H. Q., Russell K. A., Hale A. R., & Mueller U. G. Flowers and Wild Megachilid Bees Share Microbes. Microbial Ecology, 2016; 73(1): 188-200. https://doi.org/10.1007/s00248-016-0838-1
  • McFrederick Q. S., Wcislo W. T., Taylor D. R., Ishak H. D., Dowd S. E., & Mueller U. G. Environment or kin: whence do bees obtain acidophilic bacteria? Molecular Ecology, 2012; 21(7): 1754-1768. https://doi.org/10.1111/j.1365-294x.2012.05496.x
  • McFrederick Q. S., Wcislo W. T., Taylor D. R., Ishak H. D., Dowd S. E., & Mueller U. G. Environment or kin: whence do bees obtain acidophilic bacteria? Molecular Ecology, 2012; 21(7): 1754-1768. https://doi.org/10.1111/j.1365-294x.2012.05496.x
  • Miller R., Owens S. J., & Rørslett B. Plants and colour: flowers and pollination. Optics & Laser Technology, 2011; 43(2): 282-294. https://doi.org/10.1016/j.optlastec.2008.12.018
  • Mittelbach M., Yurkov A. M., Nocentini D., Nepi M., Weigend M., & Begerow D. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology, 2015; 15(1): 2-2. https://doi.org/10.1186/s12898-015-0036-x
  • Mommaerts V., Wäckers F., & Smagghe G. Assessment of gustatory responses to different sugars in harnessed and free-moving bumble bee workers (Bombus terrestris). Chemical Senses, 2013; 38(5): 399-407. https://doi.org/10.1093/chemse/bjt014
  • Morris M. M., Frixione N. J., Burkert A. C., Dinsdale E. A., & Vannette R. L. Microbial abundance, composition, and function in nectar are shaped by flower visitor identity. FEMS Microbiology Ecology, 2020; 96(3). https://doi.org/10.1093/femsec/fiaa003
  • Ncube B., Nair J. J., Rárová L., Strnad M., Finnie J. F., & Van Staden J. Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 2015; 97: 69-76. https://doi.org/10.1016/j.sajb.2014.12.005
  • Nicolson S. W., & Thornburg R. W. Nectar chemistry. In Ed.^Eds. Springer Netherlands, Dordrecht, 2007, p. 215-264. https://doi.org/10.1007/978-1-4020-5937-7_5
  • Nowak A., Szczuka D., Górczyńska A., Motyl I., & Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells, 2021; 10(3): 701-701. https://doi.org/10.3390/cells10030701
  • O'Garro L., & Charlemange E. Comparison of bacterial growth and activity of glucanase and chitinase in pepper leaf and flower tissue infected with Xanthomonas campestris pv. vesicatoria. Physiological and Molecular Plant Pathology, 1994; 45(3): 181-188. https://doi.org/10.1016/S0885-5765(05)80075-X
  • Oldroyd B. P., Rinderer T. E., & Buco S. M. Intracolonial variance in honey bee foraging behaviour: the effects of sucrose concentration. Journal of Apicultural Research, 1991; 30(3-4): 137-145. https://doi.org/10.1080/00218839.1991.11101248
  • Palmer-Young E. C., Raffel T. R., & McFrederick Q. S. pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology, 2019; 146(3): 380-388. https://doi.org/10.1017/S0031182018001555
  • Parret A., & De Mot R. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends in Microbiology, 2002; 10(3): 107-112. https://doi.org/10.1016/S0966-842X(02)02307-7
  • Peakall R., Ebert D., Poldy J., Barrow R. A., Francke W., Bower C. C., & Schiestl F. P. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytologist, 2010; 188(2): 437-450. https://doi.org/10.1111/j.1469-8137.2010.03308.x
  • Peay K. G., Belisle M., & Fukami T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society B: Biological Sciences, 2011; 279(1729): 749-758. https://doi.org/10.1098/rspb.2011.1230
  • Peshev D., & Van den Ende W. Fructans: prebiotics and immunomodulators. Journal of Functional Foods, 2014; 8: 348-357. https://doi.org/10.1016/j.jff.2014.04.005
  • Pozo M. I., & Jacquemyn H. Addition of pollen increases growth of nectar-living yeasts. FEMS Microbiology Letters, 2019; 366(15): fnz191. https://doi.org/10.1093/femsle/fnz191
  • Pozo M. I., Herrera C. M., & Bazaga P. Species richness of yeast communities in floral nectar of southern Spanish plants. Microbial Ecology, 2011; 61(1): 82-91. https://doi.org/10.1007/s00248-010-9682-x
  • Pozo M. I., Lachance M. A., & Herrera C. M. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiology Ecology, 2012; 80: 281-293. https://doi.org/10.1111/j.1574-6941.2011.01286.x
  • Pozo M. I., Mariën T., Van Kemenade G., Wäckers F., & Jacquemyn H. Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumble bee colony development. Oecologia, 2021; 195: 689-703. https://doi.org/10.1007/s00442-021-04872-4
  • Pozo M. I., Van Kemenade G., Van Oystaeyen A., Aledón-Catalá T., Benavente A., Van Den Ende W., Wäckers F., & Jacquemyn H. The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecological Monographs, 2019; 90(1): 1-10. https://doi.org/10.1002/ecm.1393
  • Pusey P. L., Stockwell V. O., & Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 2009; 99: 571–581. https://doi.org/10.1094/PHYTO-99-5-0571
  • Pyke G. H. Floral Nectar: Pollinator Attraction or Manipulation? Trends in ecology & evolution, 2016; 31: 339-341. https://doi.org/10.1016/j.tree.2016.02.013
  • Ramanovich N., Savelieva T., Biruk А., & Shukshyna M. Investigation of the Possibility of Using Bee Microbiotes and Bee Products for Isolation of Lactic Acids and Bifidobacteria. Topical issues of processing of meat and milk raw materials, 2021; 1(15) (15): 55-64. https://doi.org/10.47612/2220-8755-2020-15-55-64
  • Rands S. A., & Whitney H. M. Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? Plos One, 2008; 3: e2007. https://doi.org/10.1371/journal.pone.0002007
  • Rering C. C., Beck J. J., Hall G. W., McCartney M. M., & Vannette R. L. Nectar‐inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytologist, 2017; 220: 750-759. https://doi.org/10.1111/nph.14809
  • Richardson L. L., Adler L. S., Leonard A. S., Andicoechea J., Regan K. H., Anthony W. E., Manson J. S., & Irwin R. E. Secondary metabolites in floral nectar reduce parasite infections in bumble bees. Proceedings of the Royal Society B: Biological Sciences, 2015; 282: 20142471. https://doi.org/10.1098/rspb.2014.2471
  • Ricigliano V., & Anderson K. Probing the Honey Bee Diet-Microbiota-Host Axis Using Pollen Restriction and Organic Acid Feeding. Insects, 2020; 11(5): 1-10. https://doi.org/10.3390/insects11050291
  • Rivest S., & Forrest J. R. K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytologist, 2019; 225: 1053-1064. https://doi.org/10.1111/nph.16230
  • Rosa C. A., Lachance M. A., Silva J. O., Teixeira A. C., Marini M. M., Antonini Y., & Martins R. P. Yeast communities associated with stingless bees. FEMS Yeast Research, 2003; 4: 271-275. https://doi.org/10.1016/s1567-1356(03)00173-9
  • Rothman J. A., Russell K. A., Leger L., McFrederick Q. S., & Graystock P. The direct and indirect effects of environmental toxicants on the health of bumble bees and their microbiomes. Proceedings of the Royal Society B: Biological Sciences, 2020; 287: 20200980. https://doi.org/10.1098/rspb.2020.0980
  • Roulston T. A. H., & Cane J. H. Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 2000; 222: 187-209. https://doi.org/10.1007/978-3-7091-6306-1_10
  • Roy R., Schmitt A. J., Thomas J. B., & Carter C. J. Nectar biology: from molecules to ecosystems. Plant Science, 2017; 262: 148-164. https://doi.org/10.1016/j.plantsci.2017.04.012
  • Russell A. L., Rebolleda‐Gómez M., Shaible T. M., & Ashman T. Movers and shakers: Bumble bee foraging behavior shapes the dispersal of microbes among and within flowers. Ecosphere, 2019; 10: e02714. https://doi.org/10.1002/ecs2.2714
  • Samuni-Blank M., Izhaki I., Laviad S., Bar-Massada A., Gerchman Y., & Halpern M. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar. Plos One, 2014; 9(6): e99107. https://doi.org/10.1371/journal.pone.0099107
  • Sandhu D. K., & Waraich M. K. Yeasts Associated with Pollinating Bees and Flower Nectar. Microbial Ecology, 1985; 11(1): 51–58. https://doi.org/10.1007/BF02015108
  • Santorelli L. A., Wilkinson T., Abdulmalik R., Rai Y., Creevey C. J., Huws S., & Gutierrez-Merino J. Beehives possess their own distinct microbiomes. Environmental Microbiome, 2023; 18(1): 1. https://doi.org/10.1186/s40793-023-00460-6
  • Santos A. R. O., Leon M. P., Barros K. O., Freitas L. F. D., Hughes A. F. S., Morais P. B., Lachance M. A., & Rosa C. A. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. International Journal of Systematic and Evolutionary Microbiology, 2018; 68: 1333-1343. https://doi.org/10.1099/ijsem.0.002675
  • Schaeffer R. N., & Irwin R. E. Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology, 2014; 95: 1792-1798. https://doi.org/10.1890/13-1740.1
  • Schaeffer R. N., Mei Y. Z., Andicoechea J., Manson J. S., Irwin R. E., & Kudo G. Consequences of a nectar yeast for pollinator preference and performance. Functional Ecology, 2016; 31: 613-621. https://doi.org/10.1111/1365-2435.12762
  • Schaeffer R. N., Rering C. C., Maalouf I., Beck J. J., & Vannette R. L. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumble bees. Biology Letters, 2019; 15: 20190132. https://doi.org/10.1098/rsbl.2019.0132
  • Schaeffer R. N., Rering C. C., Maalouf I., Beck J. J., & Vannette R. L. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumble bees. Biology Letters, 2019; 15: 20190132. https://doi.org/10.1098/rsbl.2019.0132
  • Schmitt A. J., Sathoff A. E., Holl C., Bauer B., Samac D. A., & Carter C. J. The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. Journal of Experimental Botany, 2018; 69: 5587-5597. https://doi.org/10.1093/jxb/ery319
  • Seeley T. D., Mikheyev A. S., & Pagano G. J. Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 2000; 186: 813-819. https://doi.org/10.1007/s003590000134
  • Seymour R. S., & Schultze-Motel P. Physiological temperature regulation by flowers of the sacred lotus. Philos Trans R Soc Lon B, 1998; 353: 935-943. https://doi.org/10.1098/rstb.1998.0258
  • Seymour R. S., White C. R., & Gibernau M. Environmental biology: heat reward for insect pollinators. Nature, 2003; 426: 243-244. https://doi.org/10.1038/426243a
  • Shade A., McManus P. S., & Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. mBio, 2013; 4: e00602-00612. https://doi.org/10.1128/mBio.00602-12
  • Sharaby Y., Rodríguez-Martínez S., Lalzar M., Halpern M., & Izhaki I. Geographic partitioning or environmental selection: What governs the global distribution of bacterial communities inhabiting floral nectar? The Science of the total environment, 2020; 749: 142305. https://doi.org/10.1016/j.scitotenv.2020.142305
  • Shi H., Ratering S., Schneider B., & Schnell S. Microbiome of honey bee corbicular pollen: Factors influencing its structure and potential for studying pathogen transmission. The Science of the total environment, 2025; 958: 178107. https://doi.org/10.1016/j.scitotenv.2024.178107
  • Sobhy I. S., Baets D., Goelen T., Herrera-Malaver B., Bosmans L., Van Den Ende W., Verstrepen K. J., Wäckers F., Jacquemyn H., & Lievens B. Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Frontiers in plant science, 2018; 9: 1009. https://doi.org/10.3389/fpls.2018.01009
  • Sobral M., Veiga T., Domínguez P., Guitián J. A., Guitián P., & Guitián J. M. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations. Plos One, 2015; 10(7): e0132522. https://doi.org/10.1371/journal.pone.0132522
  • Stabler D., Paoli P. P., Nicolson S. W., & Wright G. A. Nutrient balancing of the adult worker bumble bee (Bombus terrestris) depends on the dietary source of essential amino acids. Journal of experimental Biology, 2015; 218(5): 793-802. https://doi.org/10.1242/jeb.114249
  • Steffan S. A., Dharampal P. S., Danforth B. N., Gaines-Day H. R., Takizawa Y., & Chikaraishi Y. Omnivory in Bees: Elevated Trophic Positions among All Major Bee Families. The American naturalist, 2019; 194(3): 414-421. https://doi.org/10.1086/704281
  • Stökl J., Strutz A., Dafni A., Svatos A., Doubsky J., Knaden M., Sachse S., Hansson B. S., & Stensmyr M. C. A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast. Current Biology, 2010; 20(20): 1846-1852. https://doi.org/10.1016/j.cub.2010.09.033
  • Taniwaki M. H., Pitt J. I., Iamanaka B. T., Massi F. P., Fungaro M. H. P., & Frisvad J. C. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin. Plos One, 2015; 10(12): e0143189. https://doi.org/10.1371/journal.pone.0143189
  • Teixido A. L., Barrio M., & Valladares F. Size Matters: Understanding the Conflict Faced by Large Flowers in Mediterranean Environments. Botanical Review, 2016; 82: 204-228. https://doi.org/10.1007/s12229-016-9168-
  • Tucker C. M., & Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proceedings of the Royal Society B: Biological Sciences, 2014; 281(1778): 20132637. https://doi.org/10.1098/rspb.2013.2637
  • Ushio M., Yamasaki E., Takasu H., Nagano A. J., Fujinaga S., Honjo M. N., Ikemoto M., Sakai S., & Kudoh H. Microbial communities on flower surfaces act as signatures of pollinator visitation. Scientific Reports, 2015; 5(1): 8695. https://doi.org/10.1038/srep08695
  • Vanneste J. L. Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora. CABI Publ, New York, 2000, p. https://doi.org/10.1079/9780851992945.0000
  • Vannette R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annual Review of Ecology, Evolution, and Systematics, 2020; 51(1): 363-386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
  • Vannette R. L., & Fukami T. Contrasting effects of yeasts and bacteria on floral nectar traits. Annals of Botany, 2018; 121(7): 1343-1349. https://doi.org/10.1093/aob/mcy032
  • Vannette R. L., & Fukami T. Dispersal enhances beta diversity in nectar microbes. Ecology Letters, 2017; 20(7): 901-910. https://doi.org/10.1111/ele.12787
  • Vannette R. L., & Fukami T. Historical contingency in species interactions: towards niche-based predictions. Ecology Letters, 2014; 17(1): 115-124. https://doi.org/10.1111/ele.12204
  • Vannette R. L., Gauthier M.-P. L., & Fukami T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 2013; 280(1752): 20122601. https://doi.org/10.1098/rspb.2012.2601
  • Vásquez A., Forsgren E., Fries I., Paxton R. J., Flaberg E., Szekely L., & Olofsson T. C. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. Plos One, 2012; 7(7): e33188. https://doi.org/10.1371/annotation/3ac2b867-c013-4504-9e06-bebf3fa039d1
  • Von Arx M., Moore A., Davidowitz G., & Arnold A. E. Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. Plos One, 2019; 14(12): e0225309. https://doi.org/10.1371/journal.pone.0225309
  • Vuong H. Q., & McFrederick Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biology and Evolution, 2019; 11(8): 2151-2161. https://doi.org/10.1093/gbe/evz136
  • Wang H., Liu C., Liu Z., Wang Y., Ma L., & Xu B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiology, 2020; 20(1): 61. https://doi.org/10.1186/s12866-020-01726-6
  • Wei N., & Ashman T. L. The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Scientific Reports, 2018; 8(1): 5195. https://doi.org/10.1038/s41598-018-23518-9
  • Wiens F., Zitzmann A., Lachance M. A., Yegles M., Pragst F., Wurst F. M., Von Holst D., Guan S. L., & Spanagel R. Chronic intake of fermented floral nectar by wild treeshrews. Proceedings of the National Academy of Sciences, 2008; 105(30): 10426-10431. https://doi.org/10.1073/pnas.0801628105
  • Willmer P. The Effects of Insect Visitors on Nectar Constituents in Temperate Plants. Oecologia, 1980; 47(2): 270-277. https://doi.org/10.1007/BF00346832
  • Yan J., Wang G., Sui Y., Wang M., & Zhang L. Pollinator responses to floral colour change, nectar and scent promote reproductive fitness in Quisqualis indica (Combretaceae). Scientific Reports, 2016; 6(1): 24408. https://doi.org/10.1038/srep24408
  • Yang M., Deng G. C., Gong Y. B., & Huang S. Q. Nectar yeasts enhance the interaction between Clematis akebioides and its bumble bee pollinator. Plant Biology, 2019; 21(4): 732-737. https://doi.org/10.1111/plb.12957
  • Zariman A., Omar N., & Nurul Huda A. Plant Attractants and Rewards for Pollinators: Their Significance to Successful Crop Pollination. International Journal of Life Sciences and Biotechnology, 2022; 5(2): 270-293. https://doi.org/10.38001/ijlsb.1069254
  • Zarraonaindia I., Owens S. M., Weisenhorn P., West K., Hampton-Marcell J., Lax S., Bokulich N. A., Mills D. A., Martin G., Taghavi S., Van Der Lelie D., & Gilbert J. A. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio, 2015; 6(2). https://doi.org/10.1128/mbio.02527-14
  • Zheng H., Perreau J., Powell J. E., Han B., Zhang Z., Kwong W. K., Tringe S. G., & Moran N. A. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proceedings of the National Academy of Sciences, 2019; 116(51): 25909-25916. https://doi.org/10.1073/pnas.1916224116
  • Zheng J., Wittouck S., Salvetti E., Franz C. M. a. P., Harris H. M. B., Mattarelli P., O'Toole P. W., Pot B., Vandamme P., Walter J., Watanabe K., Wuyts S., Felis G. E., Gänzle M. G., & Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020; 70(4): 2782-2858. https://doi.org/10.1099/ijsem.0.004107

Bitki-Mikrobiyom-Polinatör Ko-adaptasyon Stratejileri ve Mekanizmaları

Year 2025, Volume: 25 Issue: 1, 171 - 196, 30.05.2025
https://doi.org/10.31467/uluaricilik.1675598

Abstract

Bitki-polinatör etkileşimleri, karşılıklı faydaya dayalı ko-evrimi sergilemektedir; ancak mikroorganizmaların bu ilişkilerdeki rolü genellikle göz ardı edilmektedir. Başlıca mayalar ve bakterilerden oluşan nektarda yaşayan mikroorganizmalar, çiçek kimyasını, polinatör davranışını ve bitki üremesini önemli ölçüde etkilemektedir. Bu mikroorganizmalar, nektarın şeker içeriğini, amino asit profillerini, pH'ını ve koku emisyonlarını değiştirerek polinatör tercihlerini şekillendirmektedir. Örneğin, Metschnikowia reukaufii mayası, bombus arılarını cezbeden meyvemsi esterler üretirken, bazı bakteriler pH'ı düşürerek bal arılarını uzaklaştırmaktadır. Polinatörler, bu mikroorganizmaları çiçekler arasında yayarak, mikrobiyal toplulukları şekillendiren ve ko-evrimi yönlendiren bir geri bildirim döngüsü oluşturmaktadır. Nektarın ötesinde, mikroorganizmalar metabolik ısı yoluyla termal düzenlemeyi, polen sağlığını ve polinatör bağırsak mikrobiyomlarını etkilemektedir. Rosenbergiella nectarea ve Acinetobacter spp. gibi özelleşmiş bakteriler, nektarın yüksek şekerli ortamında gelişirken, Lactobacillus kunkeei gibi polinatör mikroorganizmaları, bal arılarını patojenlerden korumaktadır. Mikrobiyal çeşitlilik bölgeye göre değişmekte olup, tropikal çiçekler ılıman iklim çiçeklerine göre daha zengin topluluklara ev sahipliği yapmaktadır. Bu derleme, mikroorganizmaların polinatör beslenmesini, bağışıklığını ve besin arama verimliliğini artırarak bitki-polinatör ağlarında nasıl kilit oyuncular olarak rol oynadığını vurgulamaktadır. Mikrobiyal yayılımı, rekabeti ve kimyasal etkileri inceleyerek, mikrobiyoloji, ekoloji ve evrimi harmanlayan çalışmalara çağrı yapmaktadır. Bu etkileşimleri anlamak, iklim değişikliğinin ve habitat kaybının tozlaşmayı nasıl tehdit ettiğini tahmin etmek, tarımı ve biyoçeşitliliği etkilemek için hayati öneme sahiptir.

Ethical Statement

Etik kurul onayı gerekli değildir.

Supporting Institution

Koltsov Institute of Developmental Biology of Russian academy of Sciences

Project Number

Russian Science Foundation (RSF) grant 24-16-00179

Thanks

IDB RAS (Rusya Bilimler Akademisi Sibirya Şubesi) 0088-2024-0009 numaralı devlet temel araştırma programı

References

  • Adler L. S. Alkaloid Uptake Increases Fitness in a Hemiparasitic Plant via Reduced Herbivory and Increased Pollination. The American naturalist, 2000; 156(1): 92-99. https://doi.org/10.1086/303374
  • Adler L. S., Irwin R. E., McArt S. H., & Vannette R. L. Floral traits affecting the transmission of beneficial and pathogenic pollinator–associated microbes. Curr Opin Insect Sci, 2020; 44: 1-7. https://doi.org/10.1016/j.cois.2020.08.006
  • Aizenberg-Gershtein Y., Izhaki I., & Halpern M. Do Honey bees Shape the Bacterial Community Composition in Floral Nectar? Plos One, 2013; 8(7): e67556. https://doi.org/10.1371/journal.pone.0067556
  • Aleklett K., Hart M., & Shade A. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany, 2014; 92(4): 253-266. https://doi.org/10.1139/cjb-2013-0166
  • Alexander H., & Antonovics J. Disease spread and population dynamics of anther‐smut infection of Silene alba caused by the fungus Ustilago violacea. Journal of Ecology, 1988; 76(1): 91-104. https://doi.org/10.2307/2260456
  • Álvarez-Pérez S., & Herrera C. M. Composition, richness and non-concurrent fungal communities in floral nectar of Mediterranean plants. FEMS Microbiology Ecology, 2013; 83(3): 685-699. https://doi.org/10.1111/1574-6941.12027
  • Álvarez-Pérez S., Herrera C. M., & de Vega C. Zooming-in on floral nectar: A first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiology Ecology, 2012; 80(3): 591-602. https://doi.org/10.1111/j.1574-6941.2012.01329.x
  • Álvarez-Pérez S., Lievens B., & Fukami T. Yeast-bacterium interactions: the next frontier in nectar research. Trends in Plant Science, 2019; 24(5): 393-401. https://doi.org/10.1016/j.tplants.2019.01.012
  • Álvarez-Pérez S., Lievens B., Jacquemyn H., & Herrera C. M. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. International Journal of Systematic and Evolutionary Microbiology, 2013; 63(Pt 4): 1532-1539. https://doi.org/10.1099/ijs.0.043489-0
  • Álvarez-Pérez S., Tsuji K., Donald M., Van Assche A., Vannette R. L., Herrera C. M., Jacquemyn H., Fukami T., & Lievens B. Nitrogen assimilation varies among clades of nectar- and insect-associated Acinetobacters. Microbial Ecology, 2021; 81(4): 990-1003. https://doi.org/10.1007/s00248-020-01671-x
  • Amoo S. O., Aremu A. O., & Van Staden J. Unraveling the medicinal potential of South African Aloe species. Journal of Ethnopharmacology, 2014; 153(1): 19-41. https://doi.org/10.1016/j.jep.2014.01.036
  • An S. Q., Potnis N., Dow M., Vorhölter F. J., He Y. Q., Becker A., Teper D., Li Y., Wang N., Bleris L., & Tang J. L. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, 2020; 44(1): 1-32. https://doi.org/10.1093/femsre/fuz024
  • Anderson K. E., Sheehan T. H., Mott B. M., Maes P., Snyder L., Schwan M. R., Walton A., Jones B. M., & Corby-Harris V. Microbial Ecology of the Hive and Pollination Landscape: Bacterial Associates from Floral Nectar, the Alimentary Tract and Stored Food of Honey Bees (Apis mellifera). Plos One, 2013; 8(12): e83125. https://doi.org/10.1371/journal.pone.0083125
  • Aremu A. O., & Van Staden J. The genus Tulbaghia (Alliaceae) – A review of its ethnobotany, pharmacology, phytochemistry and conservation needs. Journal of Ethnopharmacology, 2013; 149(2): 387-400. https://doi.org/10.1016/j.jep.2013.06.046
  • Arredondo D., Castelli L., Porrini M. P., Garrido P. M., Eguaras M. J., Zunino P., & Antúnez K. Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Benef Microbes, 2018; 9(2): 279-290. https://doi.org/10.3920/bm2017.0075
  • Baker H. G., & Baker I. Floral nectar constituents in relation to pollinator type. Handbook of Experimental Pollination Biology, 1983: 117-141.
  • Baker H. G., & Baker I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Plant Sciences, 1990; 39(1-2): 157-166. https://doi.org/10.1080/0021213X.1990.10677140
  • Barnes K., Nicolson S. W., & van Wyk B. E. Nectar sugar composition in Erica. Biochemical Systematics and Ecology, 1995; 23(4): 419-423. https://doi.org/10.1016/0305-1978(95)00024-O
  • Belisle M., Peay K. G., & Fukami T. Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microbial Ecology, 2012; 63(4): 711-718. https://doi.org/10.1007/s00248-011-9975-8
  • Biere A., & Honders S. C. Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia. New Phytologist, 2006; 169(4): 719-727. https://doi.org/10.1111/j.1469-8137.2005.01511.x
  • Boutroux L. Conservation des ferments alcooliques dans la nature. Annales des Sci Naturelles, Série IV, Botanique, 1884; 17: 144-209.
  • Brown M., Downs C. T., & Johnson S. D. Concentration-dependent sugar preferences of the malachite sunbird (Nectarinia famosa). Ornithology, 2010; 127(1): 151-155. https://doi.org/10.1525/auk.2009.09054
  • Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel), 2021; 10(5). https://doi.org/10.3390/antibiotics10050551
  • Brunner F. S., Schmid-Hempel P., & Barribeau S. M. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proceedings of the Royal Society B: Biological Sciences, 2014; 281(1786): 20140128. https://doi.org/10.1098/rspb.2014.0128
  • Brysch-Herzberg M. Ecology of yeasts in plant-bumble bee mutualism in Central Europe. FEMS Microbiology Ecology, 2004; 50(2): 87-100. https://doi.org/10.1016/j.femsec.2004.06.003
  • Burdon R. C. F., Junker R. R., Scofield D. G., & Parachnowitsch A. L. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology, 2018; 28(1): 11-19. https://doi.org/10.1007/s00049-018-0252-x
  • Buwa L. V., & Van Staden J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. Journal of Ethnopharmacology, 2006; 103(1): 139-142. https://doi.org/10.1016/j.jep.2005.09.020
  • Canto A., & Herrera C. M. Micro-organisms behind the pollination scenes: Microbial imprint on floral nectar sugar variation in a tropical plant community. Annals of Botany, 2012; 110(6): 1173-1183. https://doi.org/10.1093/aob/mcs183
  • Canto A., Herrera C. M., & Rodriguez R. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits. PeerJ, 2017; 5: e3517. https://doi.org/10.7717/peerj.3517
  • Canto A., Herrera C. M., García I. M., García M., & Bazaga P. Comparative effects of two species of floricolous Metschnikowia yeasts on nectar. Anales Del Jardín Botánico de Madrid, 2015; 72(1): e019. https://doi.org/10.3989/ajbm.2396
  • Canto A., Herrera C. M., Medrano M., Pérez R., & García I. M. Pollinator foraging modifies nectar sugar composition in Helleborus foetidus (Ranunculaceae): An experimental test. American Journal of Botany, 2008; 95(3): 315-320. https://doi.org/10.3732/ajb.95.3.315
  • Carter C., & Thornburg R. W. Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science, 2004; 9(7): 320-324. https://doi.org/10.1016/j.tplants.2004.05.008
  • Carter C., Graham R. A., & Thornburg R. W. Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology, 1999; 41(2): 207-216. https://doi.org/10.1023/A:1006363508648
  • Christensen S. M., Munkres I., & Vannette R. L. Nectar bacteria stimulate pollen germination and bursting to enhance microbial fitness. Current Biology, 2021; 31(19): 4373-4380.e4376. https://doi.org/10.1016/j.cub.2021.07.016
  • Colda A., Bossaert S., Verreth C., Vanhoutte B., Honnay O., Keulemans W., & Lievens B. Inoculation of pear flowers with Metschnikowia reukaufii and Acinetobacter nectaris enhances attraction of honeybees and hoverflies, but does not increase fruit and seed set. Plos One, 2021; 16(4): e0250203. https://doi.org/10.1371/journal.pone.0250203
  • Corbet S. A., Willmer P. G., Beament J. W. L., Unwin D. M., & Prŷs-Jones O. E. Post-secretory determinants of sugar concentration in nectar. Plant, Cell & Environment, 1979; 2(4): 293-308. https://doi.org/10.1111/j.1365-3040.1979.tb00084.x
  • Corby-Harris V., Maes P., & Anderson K. E. The bacterial communities associatedforagers. Plos One, 2014; 9(4): e95056. https://doi.org/10.1371/journal.pone.0095056
  • Crotti E., Rizzi A., Chouaia B., Ricci I., Favia G., Alma A., Sacchi L., Bourtzis K., Mandrioli M., Cherif A., Bandi C., & Daffonchio D. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects. Applied and Environmental Microbiology, 2010; 76(21): 6963-6970. https://doi.org/10.1128/aem.01336-10
  • Cullen N. P., Fetters A. M., & Ashman T. L. Integrating microbes into pollination. Curr Opin Insect Sci, 2021; 44: 48-54. https://doi.org/10.1016/j.cois.2020.11.002
  • de Vega C., & Herrera C. M. Relationships among nectar-dwelling yeasts, flowers and ants: patterns and incidence on nectar traits. Oikos, 2012; 121(11): 1878-1888. https://doi.org/10.1111/j.1600-0706.2012.20295.x
  • de Vega C., Albaladejo R. G., Guzmán B., Steenhuisen S., Johnson S. D., Herrera C. M., & Lachance M. Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea f.a. sp. nov., and Wickerhamiella natalensis f.a. sp. nov. from South African flowers and pollinators, and transfer of related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Research, 2017; 17(5). https://doi.org/10.1093/femsyr/fox054
  • de Vega C., Álvarez-Pérez S., Albaladejo R. G., Steenhuisen S. L., Lachance M. A., Johnson S. D., & Herrera C. M. The role of plant-pollinator interactions in structuring nectar microbial communities. Journal of Ecology, 2021; 109(9): 3379-3395. https://doi.org/10.1111/1365-2745.13726
  • de Vega C., Álvarez-Pérez S., Albaladejo R. G., Steenhuisen S., Lachance M., Johnson S. D., & Herrera C. M. The role of plant-pollinator interactions in structuring nectar microbial communities. Journal of Ecology, 2021; 109(9): 3379-3395. https://doi.org/10.1111/1365-2745.13726
  • de Vega C., Guzman B., Steenhuisen S. L., Johnson S. D., Herrera C. M., & Lachance M. A. Metschnikowia drakensbergensis sp. nov. and Metschnikowia caudata sp. nov., endemic yeasts associated with Protea flowers in South Africa. International Journal of Systematic and Evolutionary Microbiology, 2014; 64(11): 3724-3732. https://doi.org/10.1099/ijs.0.068445-0
  • de Vega C., Herrera C. M., & Johnson S. D. Yeasts in floral nectar of some South African plants: quantification and associations with pollinator type and sugar concentration. South African Journal of Botany, 2009; 75(4): 798-806. https://doi.org/10.1016/j.sajb.2009.07.016
  • Dhami M. K., Hartwig T., & Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proceedings of the Royal Society B: Biological Sciences, 2016; 283(1840): 20161455. https://doi.org/10.1098/rspb.2016.1455
  • Dhami M. K., Hartwig T., Letten A. D., Banf M., & Fukami T. Genomic diversity of a nectar yeast clusters into metabolically, but not geographically, distinct lineages. Molecular Ecology, 2018; 27(8): 2067-2076. https://doi.org/10.1111/mec.14535
  • Dolezal A. G., & Toth A. L. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci, 2018; 26: 114-119. https://doi.org/10.1016/j.cois.2018.02.006
  • Eisikowitch D., Lachance M. A., Kevan P. G., Willis S., & Collins-Thompson D. L. The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Canadian Journal of Botany, 1990; 68(5): 1163-1165. https://doi.org/10.1139/b90-147
  • Engel P., Martinson V. G., & Moran N. A. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109(27): 11002-11007. https://doi.org/10.1073/pnas.1202970109
  • Farré-Armengol G., Filella I., Llusia J., & Peñuelas J. Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions. Trends in Plant Science, 2016; 21(10): 854-860. https://doi.org/10.1016/j.tplants.2016.06.005
  • Figueroa L. L., Blinder M., Grincavitch C., Jelinek A., Mann E. K., Merva L. A., Metz L. E., Zhao A. Y., Irwin R. E., McArt S. H., & Adler L. S. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B: Biological Sciences, 2019; 286(1903): 20190603. https://doi.org/10.1098/rspb.2019.0603
  • Fine J. D., Shpigler H. Y., Ray A. M., Beach N. J., Sankey A. L., Cash-Ahmed A., Huang Z. Y., Astrauskaite I., Chao R., Zhao H., & Robinson G. E. Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. Plos One, 2018; 13(9): e0203444. https://doi.org/10.1371/journal.pone.0203444
  • Folly A. J., Barton-Navarro M., & Brown M. Exposure to nectar-realistic sugar concentrations negatively impacts the ability of the trypanto infect its bumble bee host. Ecological Entomology, 2020; 45(6): 1495-1498. https://doi.org/10.1111/een.12901
  • Fridman S., Izhaki I., Gerchman Y., & Halpern M. Bacterial communities in floral nectar. Environmental Microbiology Reports, 2012; 4(1): 97-104. https://doi.org/10.1111/j.1758-2229.2011.00309.x
  • Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 2015; 46(1): 1-23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
  • Gegear R. J., & Thomson J. D. Does the flower constancy of bumble bees reflect foraging economics? Ethology, 2004; 110(10): 793-805. https://doi.org/10.1111/j.1439-0310.2004.01010.x
  • Golonka A. M., Johnson B. O., Freeman J., & Hinson D. W. Impact of nectarivorous yeasts on Silene caroliniana's scent. Eastern Biologist, 2014; 3: 1-26.
  • Good A. P., Gauthier M. P. L., Vannette R. L., & Fukami T. Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. Plos One, 2014; 9(1): e86494. https://doi.org/10.1371/journal.pone.0086494
  • Grund-Mueller N., Ruedenauer F. A., Spaethe J., & Leonhardt S. D. Adding amino acids to a sucrose diet is not sufficient to support longevity of adult bumble bees. Insects, 2020; 11(4): 247. https://doi.org/10.3390/insects11040247
  • Hammer T. J., Le E., Martin A. N., & Moran N. A. The gut microbiota of bumble bees. Insectes Sociaux, 2021; 68(4): 287-301. https://doi.org/10.1007/s00040-021-00837-1
  • Heiduk A., Brake I., Shuttleworth A., & Johnson S. D. 'Bleeding' flowers of Ceropegia gerrardii (Apocynaceae-asclepiadoideae) mimic wounded insects to attract kleptoparasitic fly pollinators. New Phytologist, 2023; 239(4): 1490-1504. https://doi.org/10.1111/nph.18888
  • Herrera C. M. Scavengers that fit beneath a microscope lens. Ecology, 2017; 98(10): 2725-2726. https://doi.org/10.1002/ecy.1874
  • Herrera C. M., & Pozo M. I. Nectar yeasts warm the flowers of a winter-blooming plant. Proceedings of the Royal Society B: Biological Sciences, 2010; 277(1689): 1827-1834. https://doi.org/10.1098/rspb.2009.2252
  • Herrera C. M., Canto A., Pozo M. I., & Bazaga P. Inhospitable sweetness: Nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proceedings of the Royal Society B: Biological Sciences, 2010; 277(1682): 747-754. https://doi.org/10.1098/rspb.2009.1485
  • Herrera C. M., De Vega C., Canto A., & Pozo M. I. Yeasts in floral nectar: A quantitative survey. Annals of Botany, 2009; 103(9): 1415-1423. https://doi.org/10.1093/aob/mcp026
  • Herrera C. M., García I. M., & Pérez R. Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology, 2008; 89(9): 2369-2376. https://doi.org/10.1890/08-0241.1
  • Herrera C. M., Pozo M. I., & Medrano M. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology, 2013; 94(2): 273-279. https://doi.org/10.1890/12-0595.1
  • Hietaranta E., Juottonen H., & Kytöviita M. M. Honey bees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia, 2022; 201(1): 59-72. https://doi.org/10.1007/s00442-022-05285-7
  • Hinton D., & Bacon C. The distribution and ultrastructure of the endophyte of toxic tall fescue. Canadian Journal of Botany, 1985; 63(1): 36-42. https://doi.org/10.1139/b85-006
  • Hodgson S., Cates C., Hodgson J., Morley N., Sutton B., & Gange A. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution, 2014; 4(8): 1199-1208. https://doi.org/10.1002/ece3.953
  • Hua S. S. T., Beck J. J., Sarreal S. B. L., & Gee W. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res, 2014; 30(2): 71-78. https://doi.org/10.1007/s12550-014-0189-z
  • Huang M., Sanchez-Moreiras A. M., Abel C., Sohrabi R., Lee S., Gershenzon J., & Tholl D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (e)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 2012; 193(4): 997-1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x
  • lyasov R., Boguslavsky D., Ilyasova A., Sattarov V., & Danilenko V. A multifaceted bioactivity of honey: Interactions between bees, plants and microorganisms. Uludağ Arıcılık Dergisi, 2024; 24(2): 356-385. https://doi.org/10.31467/uluaricilik.1511847
  • Jacquemyn H., Lenaerts M., Brys R., Willems K., Honnay O., & Lievens B. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. Plos One, 2013; 8(3): e56917. https://doi.org/10.1371/journal.pone.0056917
  • Jersáková J., Johnson S. D., & Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biological Reviews of the Cambridge Philosophical Society, 2006; 81(2): 219-235. https://doi.org/10.1017/S1464793105006986
  • Johnson S. D. Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behavior. Biological Journal of the Linnean Society, 2000; 71(1): 119-132. https://doi.org/10.1111/j.1095-8312.2000.tb01246.x
  • Junker R. R., Romeike T., Keller A., & Langen D. Density-dependent negative responses by bumble bees to bacteria isolated from flowers. Apidologie, 2014; 45(4): 467-477. https://doi.org/10.1007/s13592-013-0262-1
  • Keller A., McFrederick Q. S., Dharampal P., Steffan S., Danforth B. N., & Leonhardt S. D. (More than) Hitchhikers through the network: The shared microbiome of bees and flowers. Curr Opin Insect Sci, 2021; 44: 8-15. https://doi.org/10.1016/j.cois.2020.09.007
  • Khan A., Zhao Y., & Korban S. Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen Erwinia amylovora, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter, 2012; 30(2): 1-14. https://doi.org/10.1007/s11105-011-0334-1.
  • Kim D. R., Cho G., Jeon C. W., Weller D. M., Thomashow L. S., Paulitz T. C., & Kwak Y. S. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat Commun, 2019; 10(1): 4802. https://doi.org/10.1038/s41467-019-12785-3.
  • Kim P. S., Shin N. R., Kim J. Y., Yun J. H., Hyun D. W., & Bae J. W. Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera. Journal of Microbiology, 2014; 52(8): 639-645. https://doi.org/10.1007/s12275-014-4078-0.
  • Klaps J. Analysis of yeast diversity in floral microhabitats from Metrosideros polymorpha Gaud. KU Leuven. Leuven, 2019, Pages. Retrieved from URL| Available rom Database Provider Name of Database database.| (Document Number)
  • Klaps J., Lievens B., & Álvarez-Pérez S. Towards a better understanding of the role of nectar-inhabiting yeasts in plant-animal interactions. Fungal Biology and Biotechnology, 2020; 7: 1. https://doi.org/10.1186/s40694-019-0091-8
  • Koch H., Woodward J., Langat M. K., Brown M. J. F., & Stevenson P. C. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumble bee Parasite. Current Biology, 2019; 29(20): 3494-3500.e3495. https://doi.org/10.1016/j.cub.2019.08.037.
  • Lachance M. A., Ewing C. P., Bowles J. M., & Starmer W. T. Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. International Journal of Systematic and Evolutionary Microbiology, 2005; 55(3): 1369-1377. https://doi.org/10.1099/ijs.0.63615-0.
  • Lachance M. A., Vale H. M. M., Sperandio E. M., Carvalho A. O. S., Santos A. R. O., Grondin C., Jacques N., Casaregola S., & Rosa C. A. Wickerhamiella dianesei f.a., sp. nov. and Wickerhamiella kurtzmanii f.a., sp. nov., two yeast species isolated from plants and insects. International Journal of Systematic and Evolutionary Microbiology, 2018; 68(10): 3351-3355. https://doi.org/10.1099/ijsem.0.003000.
  • Lachance M., Starmer W., Rosa C., Bowles J., Barker J., & Janzen D. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research, 2001; 1(1): 1-8. https://doi.org/10.1016/s1567-1356(00)00003-9.
  • Lara C., & Ornelas J. F. Hummingbirds as vectors of fungal spores in Moussonia deppeana (Gesneriaceae): Taking advantage of a mutualism? American Journal of Botany, 2003; 90(2): 260-267. https://doi.org/10.3732/ajb.90.2.262
  • Lee F. J., Rusch D. B., Stewart F. J., Mattila H. R., & Newton I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environmental Microbiology, 2014; 17(3): 796-815. https://doi.org/10.1111/1462-2920.12526
  • Lenaerts M., Álvarez-Pérez S., De Vega C., Van Assche A., Johnson S. D., Willems K. A., Herrera C. M., Jacquemyn H., & Lievens B. Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Systematic and Applied Microbiology, 2014; 37(6): 402-411. https://doi.org/10.1016/j.syapm.2014.03.002
  • Lenaerts M., Goelen T., Paulussen C., Herrera-Malaver B., Steensels J., Van Den Ende W., Verstrepen K. J., Wäckers F., Jacquemyn H., Lievens B., & Manson J. Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Functional Ecology, 2017; 31(11): 2061-2069. https://doi.org/10.1111/1365-2435.12933
  • Lignon V. A., Mas F., Jones E. E., Kaiser C., & Dhami M. K. The floral interface: a playground for interactions between insect pollinators, microbes, and plants. New Zealand Journal of Zoology, 2024; 52(2): 218-237. https://doi.org/10.1080/03014223.2024.2353285
  • Lin H., & Winston M. L. The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). The Canadian Entomologist, 1998; 130(6): 883-891. https://doi.org/10.4039/Ent130883-6
  • Mallinger R. E., & Prasifka J. R. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. Journal of Applied Entomology, 2017; 141(7): 561-573. https://doi.org/10.1111/jen.12375
  • Manirajan B. A., Ratering S., Rusch V., Schwiertz A., Geissler-Plaum R., Cardinale M., & Schnell S. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environmental Microbiology, 2016; 18(12): 5161-5174. https://doi.org/10.1111/1462-2920.13524
  • Martin V. N., Schaeffer R. N., & Fukami T. Potential effects of nectar microbes on pollinator health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022; 377(1853): 20210155. https://doi.org/10.1098/rstb.2021.0155
  • Massoni J., Bortfeld-Miller M., Jardillier L., Salazar G., Sunagawa S., & Vorholt J. A. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J, 2019; 14(1): 245-258. https://doi.org/10.1038/s41396-019-0531-8
  • McCormack P. J., Wildman H. G., & Jeffries P. Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeast-like fungi. Applied and Environmental Microbiology, 1994; 60(3): 927-931. https://doi.org/10.1128/aem.60.3.927-931.1994
  • McFrederick Q. S., Thomas J. M., Neff J. L., Vuong H. Q., Russell K. A., Hale A. R., & Mueller U. G. Flowers and Wild Megachilid Bees Share Microbes. Microbial Ecology, 2016; 73(1): 188-200. https://doi.org/10.1007/s00248-016-0838-1
  • McFrederick Q. S., Wcislo W. T., Taylor D. R., Ishak H. D., Dowd S. E., & Mueller U. G. Environment or kin: whence do bees obtain acidophilic bacteria? Molecular Ecology, 2012; 21(7): 1754-1768. https://doi.org/10.1111/j.1365-294x.2012.05496.x
  • McFrederick Q. S., Wcislo W. T., Taylor D. R., Ishak H. D., Dowd S. E., & Mueller U. G. Environment or kin: whence do bees obtain acidophilic bacteria? Molecular Ecology, 2012; 21(7): 1754-1768. https://doi.org/10.1111/j.1365-294x.2012.05496.x
  • Miller R., Owens S. J., & Rørslett B. Plants and colour: flowers and pollination. Optics & Laser Technology, 2011; 43(2): 282-294. https://doi.org/10.1016/j.optlastec.2008.12.018
  • Mittelbach M., Yurkov A. M., Nocentini D., Nepi M., Weigend M., & Begerow D. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology, 2015; 15(1): 2-2. https://doi.org/10.1186/s12898-015-0036-x
  • Mommaerts V., Wäckers F., & Smagghe G. Assessment of gustatory responses to different sugars in harnessed and free-moving bumble bee workers (Bombus terrestris). Chemical Senses, 2013; 38(5): 399-407. https://doi.org/10.1093/chemse/bjt014
  • Morris M. M., Frixione N. J., Burkert A. C., Dinsdale E. A., & Vannette R. L. Microbial abundance, composition, and function in nectar are shaped by flower visitor identity. FEMS Microbiology Ecology, 2020; 96(3). https://doi.org/10.1093/femsec/fiaa003
  • Ncube B., Nair J. J., Rárová L., Strnad M., Finnie J. F., & Van Staden J. Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 2015; 97: 69-76. https://doi.org/10.1016/j.sajb.2014.12.005
  • Nicolson S. W., & Thornburg R. W. Nectar chemistry. In Ed.^Eds. Springer Netherlands, Dordrecht, 2007, p. 215-264. https://doi.org/10.1007/978-1-4020-5937-7_5
  • Nowak A., Szczuka D., Górczyńska A., Motyl I., & Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells, 2021; 10(3): 701-701. https://doi.org/10.3390/cells10030701
  • O'Garro L., & Charlemange E. Comparison of bacterial growth and activity of glucanase and chitinase in pepper leaf and flower tissue infected with Xanthomonas campestris pv. vesicatoria. Physiological and Molecular Plant Pathology, 1994; 45(3): 181-188. https://doi.org/10.1016/S0885-5765(05)80075-X
  • Oldroyd B. P., Rinderer T. E., & Buco S. M. Intracolonial variance in honey bee foraging behaviour: the effects of sucrose concentration. Journal of Apicultural Research, 1991; 30(3-4): 137-145. https://doi.org/10.1080/00218839.1991.11101248
  • Palmer-Young E. C., Raffel T. R., & McFrederick Q. S. pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology, 2019; 146(3): 380-388. https://doi.org/10.1017/S0031182018001555
  • Parret A., & De Mot R. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends in Microbiology, 2002; 10(3): 107-112. https://doi.org/10.1016/S0966-842X(02)02307-7
  • Peakall R., Ebert D., Poldy J., Barrow R. A., Francke W., Bower C. C., & Schiestl F. P. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytologist, 2010; 188(2): 437-450. https://doi.org/10.1111/j.1469-8137.2010.03308.x
  • Peay K. G., Belisle M., & Fukami T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proceedings of the Royal Society B: Biological Sciences, 2011; 279(1729): 749-758. https://doi.org/10.1098/rspb.2011.1230
  • Peshev D., & Van den Ende W. Fructans: prebiotics and immunomodulators. Journal of Functional Foods, 2014; 8: 348-357. https://doi.org/10.1016/j.jff.2014.04.005
  • Pozo M. I., & Jacquemyn H. Addition of pollen increases growth of nectar-living yeasts. FEMS Microbiology Letters, 2019; 366(15): fnz191. https://doi.org/10.1093/femsle/fnz191
  • Pozo M. I., Herrera C. M., & Bazaga P. Species richness of yeast communities in floral nectar of southern Spanish plants. Microbial Ecology, 2011; 61(1): 82-91. https://doi.org/10.1007/s00248-010-9682-x
  • Pozo M. I., Lachance M. A., & Herrera C. M. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiology Ecology, 2012; 80: 281-293. https://doi.org/10.1111/j.1574-6941.2011.01286.x
  • Pozo M. I., Mariën T., Van Kemenade G., Wäckers F., & Jacquemyn H. Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumble bee colony development. Oecologia, 2021; 195: 689-703. https://doi.org/10.1007/s00442-021-04872-4
  • Pozo M. I., Van Kemenade G., Van Oystaeyen A., Aledón-Catalá T., Benavente A., Van Den Ende W., Wäckers F., & Jacquemyn H. The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecological Monographs, 2019; 90(1): 1-10. https://doi.org/10.1002/ecm.1393
  • Pusey P. L., Stockwell V. O., & Mazzola M. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 2009; 99: 571–581. https://doi.org/10.1094/PHYTO-99-5-0571
  • Pyke G. H. Floral Nectar: Pollinator Attraction or Manipulation? Trends in ecology & evolution, 2016; 31: 339-341. https://doi.org/10.1016/j.tree.2016.02.013
  • Ramanovich N., Savelieva T., Biruk А., & Shukshyna M. Investigation of the Possibility of Using Bee Microbiotes and Bee Products for Isolation of Lactic Acids and Bifidobacteria. Topical issues of processing of meat and milk raw materials, 2021; 1(15) (15): 55-64. https://doi.org/10.47612/2220-8755-2020-15-55-64
  • Rands S. A., & Whitney H. M. Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? Plos One, 2008; 3: e2007. https://doi.org/10.1371/journal.pone.0002007
  • Rering C. C., Beck J. J., Hall G. W., McCartney M. M., & Vannette R. L. Nectar‐inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytologist, 2017; 220: 750-759. https://doi.org/10.1111/nph.14809
  • Richardson L. L., Adler L. S., Leonard A. S., Andicoechea J., Regan K. H., Anthony W. E., Manson J. S., & Irwin R. E. Secondary metabolites in floral nectar reduce parasite infections in bumble bees. Proceedings of the Royal Society B: Biological Sciences, 2015; 282: 20142471. https://doi.org/10.1098/rspb.2014.2471
  • Ricigliano V., & Anderson K. Probing the Honey Bee Diet-Microbiota-Host Axis Using Pollen Restriction and Organic Acid Feeding. Insects, 2020; 11(5): 1-10. https://doi.org/10.3390/insects11050291
  • Rivest S., & Forrest J. R. K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytologist, 2019; 225: 1053-1064. https://doi.org/10.1111/nph.16230
  • Rosa C. A., Lachance M. A., Silva J. O., Teixeira A. C., Marini M. M., Antonini Y., & Martins R. P. Yeast communities associated with stingless bees. FEMS Yeast Research, 2003; 4: 271-275. https://doi.org/10.1016/s1567-1356(03)00173-9
  • Rothman J. A., Russell K. A., Leger L., McFrederick Q. S., & Graystock P. The direct and indirect effects of environmental toxicants on the health of bumble bees and their microbiomes. Proceedings of the Royal Society B: Biological Sciences, 2020; 287: 20200980. https://doi.org/10.1098/rspb.2020.0980
  • Roulston T. A. H., & Cane J. H. Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 2000; 222: 187-209. https://doi.org/10.1007/978-3-7091-6306-1_10
  • Roy R., Schmitt A. J., Thomas J. B., & Carter C. J. Nectar biology: from molecules to ecosystems. Plant Science, 2017; 262: 148-164. https://doi.org/10.1016/j.plantsci.2017.04.012
  • Russell A. L., Rebolleda‐Gómez M., Shaible T. M., & Ashman T. Movers and shakers: Bumble bee foraging behavior shapes the dispersal of microbes among and within flowers. Ecosphere, 2019; 10: e02714. https://doi.org/10.1002/ecs2.2714
  • Samuni-Blank M., Izhaki I., Laviad S., Bar-Massada A., Gerchman Y., & Halpern M. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar. Plos One, 2014; 9(6): e99107. https://doi.org/10.1371/journal.pone.0099107
  • Sandhu D. K., & Waraich M. K. Yeasts Associated with Pollinating Bees and Flower Nectar. Microbial Ecology, 1985; 11(1): 51–58. https://doi.org/10.1007/BF02015108
  • Santorelli L. A., Wilkinson T., Abdulmalik R., Rai Y., Creevey C. J., Huws S., & Gutierrez-Merino J. Beehives possess their own distinct microbiomes. Environmental Microbiome, 2023; 18(1): 1. https://doi.org/10.1186/s40793-023-00460-6
  • Santos A. R. O., Leon M. P., Barros K. O., Freitas L. F. D., Hughes A. F. S., Morais P. B., Lachance M. A., & Rosa C. A. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. International Journal of Systematic and Evolutionary Microbiology, 2018; 68: 1333-1343. https://doi.org/10.1099/ijsem.0.002675
  • Schaeffer R. N., & Irwin R. E. Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology, 2014; 95: 1792-1798. https://doi.org/10.1890/13-1740.1
  • Schaeffer R. N., Mei Y. Z., Andicoechea J., Manson J. S., Irwin R. E., & Kudo G. Consequences of a nectar yeast for pollinator preference and performance. Functional Ecology, 2016; 31: 613-621. https://doi.org/10.1111/1365-2435.12762
  • Schaeffer R. N., Rering C. C., Maalouf I., Beck J. J., & Vannette R. L. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumble bees. Biology Letters, 2019; 15: 20190132. https://doi.org/10.1098/rsbl.2019.0132
  • Schaeffer R. N., Rering C. C., Maalouf I., Beck J. J., & Vannette R. L. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumble bees. Biology Letters, 2019; 15: 20190132. https://doi.org/10.1098/rsbl.2019.0132
  • Schmitt A. J., Sathoff A. E., Holl C., Bauer B., Samac D. A., & Carter C. J. The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity. Journal of Experimental Botany, 2018; 69: 5587-5597. https://doi.org/10.1093/jxb/ery319
  • Seeley T. D., Mikheyev A. S., & Pagano G. J. Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 2000; 186: 813-819. https://doi.org/10.1007/s003590000134
  • Seymour R. S., & Schultze-Motel P. Physiological temperature regulation by flowers of the sacred lotus. Philos Trans R Soc Lon B, 1998; 353: 935-943. https://doi.org/10.1098/rstb.1998.0258
  • Seymour R. S., White C. R., & Gibernau M. Environmental biology: heat reward for insect pollinators. Nature, 2003; 426: 243-244. https://doi.org/10.1038/426243a
  • Shade A., McManus P. S., & Handelsman J. Unexpected diversity during community succession in the apple flower microbiome. mBio, 2013; 4: e00602-00612. https://doi.org/10.1128/mBio.00602-12
  • Sharaby Y., Rodríguez-Martínez S., Lalzar M., Halpern M., & Izhaki I. Geographic partitioning or environmental selection: What governs the global distribution of bacterial communities inhabiting floral nectar? The Science of the total environment, 2020; 749: 142305. https://doi.org/10.1016/j.scitotenv.2020.142305
  • Shi H., Ratering S., Schneider B., & Schnell S. Microbiome of honey bee corbicular pollen: Factors influencing its structure and potential for studying pathogen transmission. The Science of the total environment, 2025; 958: 178107. https://doi.org/10.1016/j.scitotenv.2024.178107
  • Sobhy I. S., Baets D., Goelen T., Herrera-Malaver B., Bosmans L., Van Den Ende W., Verstrepen K. J., Wäckers F., Jacquemyn H., & Lievens B. Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Frontiers in plant science, 2018; 9: 1009. https://doi.org/10.3389/fpls.2018.01009
  • Sobral M., Veiga T., Domínguez P., Guitián J. A., Guitián P., & Guitián J. M. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations. Plos One, 2015; 10(7): e0132522. https://doi.org/10.1371/journal.pone.0132522
  • Stabler D., Paoli P. P., Nicolson S. W., & Wright G. A. Nutrient balancing of the adult worker bumble bee (Bombus terrestris) depends on the dietary source of essential amino acids. Journal of experimental Biology, 2015; 218(5): 793-802. https://doi.org/10.1242/jeb.114249
  • Steffan S. A., Dharampal P. S., Danforth B. N., Gaines-Day H. R., Takizawa Y., & Chikaraishi Y. Omnivory in Bees: Elevated Trophic Positions among All Major Bee Families. The American naturalist, 2019; 194(3): 414-421. https://doi.org/10.1086/704281
  • Stökl J., Strutz A., Dafni A., Svatos A., Doubsky J., Knaden M., Sachse S., Hansson B. S., & Stensmyr M. C. A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast. Current Biology, 2010; 20(20): 1846-1852. https://doi.org/10.1016/j.cub.2010.09.033
  • Taniwaki M. H., Pitt J. I., Iamanaka B. T., Massi F. P., Fungaro M. H. P., & Frisvad J. C. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin. Plos One, 2015; 10(12): e0143189. https://doi.org/10.1371/journal.pone.0143189
  • Teixido A. L., Barrio M., & Valladares F. Size Matters: Understanding the Conflict Faced by Large Flowers in Mediterranean Environments. Botanical Review, 2016; 82: 204-228. https://doi.org/10.1007/s12229-016-9168-
  • Tucker C. M., & Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proceedings of the Royal Society B: Biological Sciences, 2014; 281(1778): 20132637. https://doi.org/10.1098/rspb.2013.2637
  • Ushio M., Yamasaki E., Takasu H., Nagano A. J., Fujinaga S., Honjo M. N., Ikemoto M., Sakai S., & Kudoh H. Microbial communities on flower surfaces act as signatures of pollinator visitation. Scientific Reports, 2015; 5(1): 8695. https://doi.org/10.1038/srep08695
  • Vanneste J. L. Fire Blight: The Disease and Its Causative Agent, Erwinia amylovora. CABI Publ, New York, 2000, p. https://doi.org/10.1079/9780851992945.0000
  • Vannette R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annual Review of Ecology, Evolution, and Systematics, 2020; 51(1): 363-386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
  • Vannette R. L., & Fukami T. Contrasting effects of yeasts and bacteria on floral nectar traits. Annals of Botany, 2018; 121(7): 1343-1349. https://doi.org/10.1093/aob/mcy032
  • Vannette R. L., & Fukami T. Dispersal enhances beta diversity in nectar microbes. Ecology Letters, 2017; 20(7): 901-910. https://doi.org/10.1111/ele.12787
  • Vannette R. L., & Fukami T. Historical contingency in species interactions: towards niche-based predictions. Ecology Letters, 2014; 17(1): 115-124. https://doi.org/10.1111/ele.12204
  • Vannette R. L., Gauthier M.-P. L., & Fukami T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 2013; 280(1752): 20122601. https://doi.org/10.1098/rspb.2012.2601
  • Vásquez A., Forsgren E., Fries I., Paxton R. J., Flaberg E., Szekely L., & Olofsson T. C. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. Plos One, 2012; 7(7): e33188. https://doi.org/10.1371/annotation/3ac2b867-c013-4504-9e06-bebf3fa039d1
  • Von Arx M., Moore A., Davidowitz G., & Arnold A. E. Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. Plos One, 2019; 14(12): e0225309. https://doi.org/10.1371/journal.pone.0225309
  • Vuong H. Q., & McFrederick Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biology and Evolution, 2019; 11(8): 2151-2161. https://doi.org/10.1093/gbe/evz136
  • Wang H., Liu C., Liu Z., Wang Y., Ma L., & Xu B. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiology, 2020; 20(1): 61. https://doi.org/10.1186/s12866-020-01726-6
  • Wei N., & Ashman T. L. The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Scientific Reports, 2018; 8(1): 5195. https://doi.org/10.1038/s41598-018-23518-9
  • Wiens F., Zitzmann A., Lachance M. A., Yegles M., Pragst F., Wurst F. M., Von Holst D., Guan S. L., & Spanagel R. Chronic intake of fermented floral nectar by wild treeshrews. Proceedings of the National Academy of Sciences, 2008; 105(30): 10426-10431. https://doi.org/10.1073/pnas.0801628105
  • Willmer P. The Effects of Insect Visitors on Nectar Constituents in Temperate Plants. Oecologia, 1980; 47(2): 270-277. https://doi.org/10.1007/BF00346832
  • Yan J., Wang G., Sui Y., Wang M., & Zhang L. Pollinator responses to floral colour change, nectar and scent promote reproductive fitness in Quisqualis indica (Combretaceae). Scientific Reports, 2016; 6(1): 24408. https://doi.org/10.1038/srep24408
  • Yang M., Deng G. C., Gong Y. B., & Huang S. Q. Nectar yeasts enhance the interaction between Clematis akebioides and its bumble bee pollinator. Plant Biology, 2019; 21(4): 732-737. https://doi.org/10.1111/plb.12957
  • Zariman A., Omar N., & Nurul Huda A. Plant Attractants and Rewards for Pollinators: Their Significance to Successful Crop Pollination. International Journal of Life Sciences and Biotechnology, 2022; 5(2): 270-293. https://doi.org/10.38001/ijlsb.1069254
  • Zarraonaindia I., Owens S. M., Weisenhorn P., West K., Hampton-Marcell J., Lax S., Bokulich N. A., Mills D. A., Martin G., Taghavi S., Van Der Lelie D., & Gilbert J. A. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio, 2015; 6(2). https://doi.org/10.1128/mbio.02527-14
  • Zheng H., Perreau J., Powell J. E., Han B., Zhang Z., Kwong W. K., Tringe S. G., & Moran N. A. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proceedings of the National Academy of Sciences, 2019; 116(51): 25909-25916. https://doi.org/10.1073/pnas.1916224116
  • Zheng J., Wittouck S., Salvetti E., Franz C. M. a. P., Harris H. M. B., Mattarelli P., O'Toole P. W., Pot B., Vandamme P., Walter J., Watanabe K., Wuyts S., Felis G. E., Gänzle M. G., & Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020; 70(4): 2782-2858. https://doi.org/10.1099/ijsem.0.004107
There are 177 citations in total.

Details

Primary Language English
Subjects Pollination Biology and Systems
Journal Section Review
Authors

Rustem Ilyasov 0000-0003-2445-4739

Alla Ilyasova This is me 0000-0002-7505-6805

Valery Danilenko This is me 0000-0001-5780-0621

Meral Kekeçoğlu 0000-0002-2564-8343

Rašić Slađan This is me 0000-0001-6859-2784

Pham Hong Thaı 0000-0002-6441-1402

Svetlana Khrapova This is me 0000-0002-1808-2302

Alfir Mannapov This is me 0000-0002-5093-9740

Sofia Prokudina This is me 0009-0003-2594-7663

Vener Sattarov This is me 0000-0001-6331-4398

Dmitry Boguslavsky This is me 0000-0001-9601-640X

Project Number Russian Science Foundation (RSF) grant 24-16-00179
Early Pub Date May 26, 2025
Publication Date May 30, 2025
Submission Date April 14, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 25 Issue: 1

Cite

Vancouver Ilyasov R, Ilyasova A, Danilenko V, Kekeçoğlu M, Slađan R, Thaı PH, Khrapova S, Mannapov A, Prokudina S, Sattarov V, Boguslavsky D. STRATEGIES AND MECHANISMS OF PLANT-MICROBIOME-POLLINATOR COADAPTATION. U. Arı. D.-U. Bee J. 2025;25(1):171-96.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.