Research Article
BibTex RIS Cite

Electrical, Optical and Structural Analysis Depending on Concentration of TiO Thin Films Produced via Dip-Coating Method

Year 2022, Volume: 14 Issue: 2, 590 - 603, 31.07.2022
https://doi.org/10.29137/umagd.1070390

Abstract

In this study, TiO thin films were produced on glass lamels by Dip-Coating method at 2 times 5 seconds into solutions prepared at different concentrations (A1:0.8 Molar, A2:1,25x10-2 Molar, A3:2, 5x10-3 Molar) and these films were annealed at 500 °C. In general, these films with an amorphous structure have 2θ = 25,5° (1 0 1) a spread was observed at the Miller orientation peak. With a decrease in the concentration, small grains have changed from a spherical shape to an ellipse of larger and smaller sizes. While there is a lot of reflectivities in the UV region, their transmittance values are quite high in the visible region of 400-700 nm. The energy band gap values of TiO thin films with A1, A2 and A3 concentrations were calculated as Eg = 3.52 eV; 2.60 eV and 3.03 eV, respectively. The increase in the electrical resistivity values with increasing concentration is evidence that the exhibits a typical metal-like behavior due to the particular conductivity in the oxide sub-layers.

References

  • Cacucci, A., Heintz, O., Tsiaoussis, I., Avril, L., Potin, V., Imhoff, L., & Martin, N. (2014). Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers. Thin Solid Films, 553, 47–51. doi.org/10.1016/j.tsf.2013.11.053
  • Cacucci, A., Tsiaoussis, I., Potin, V., Imhoff, L., Martin, N., & Nyberg, T. (2013). The interdependence of structural and electrical properties in TiO 2/TiO/Ti periodic multilayers. Acta Materialia, 61(11), 4215–4225. doi.org/10.1016/j.actamat.2013.03.047
  • Cao, T., Xu, K., Chen, G., & Guo, C. Y. (2013). Poly(ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Advances, 3(18), 6282–6285. doi.org/10.1039/c3ra23321a
  • Chen, Z., Zhong, W., Liang, Z., Li, W., Li, W., He, G., Wang, Y., Xie, Y., & He, Q. (2014). Photocatalytic activity enhancement of anatase TiO2 by using TiO. Journal of Nanomaterials, 2014. doi.org/10.1155/2014/298619
  • Comini, E., Sberveglieri, G., Ferroni, M., Guidi, V., & Martinelli, G. (2000). NO monitoring with a novel p-type material: TiO. In Sensors and Actuators B (Vol. 68). www.elsevier.nlrlocatersensorb
  • de Wild, M., Zimmermann, S., Rüegg, J., Schumacher, R., Fleischmann, T., Ghayor, C., & Weber, F. E. (2016). Influence of Microarchitecture on Osteoconduction and Mechanics of Porous Titanium Scaffolds Generated by Selective Laser Melting. 3D Printing and Additive Manufacturing, 3(3), 143–151. doi.org/10.1089/3dp.2016.0004
  • Dong, Z., Ling, M., Jiang, Y., Han, M., Ren, G., Zhang, J., Ren, X., Li, F., & Xue, B. (2019). Preparation and properties of TiO2/illite composites synthesized at different hydrothermal pH values. Chemical Physics, 525. doi.org/10.1016/j.chemphys.2019.110394
  • Fan, J., Fàbrega, C., Zamani, R. R., Hao, Y., Parra, A., Andreu, T., Arbiol, J., Boschloo, G., Hagfeldt, A., Morante, J. R., & Cabot, A. (2013). Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO Heterostructures with a cobalt(II/III) redox electrolyte. ACS Applied Materials and Interfaces, 5(20), 9872–9877. doi.org/10.1021/am402344d
  • Fan, X., Feng, B., Di, Y., Lu, X., Duan, K., Wang, J., & Weng, J. (2012). Preparation of bioactive TiO film on porous titanium by micro-arc oxidation. Applied Surface Science, 258(19), 7584–7588. doi.org/10.1016/j.apsusc.2012.04.093
  • Ganesh, V., Alizadeh, M., Shuhaimi, A., Adreen, A., Pandikumar, A., Jayakumar, M., Huang, N. M., Ramesh, R., Baskar, K., & Rahman, S. A. (2017). Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 706, 629–636. doi.org/10.1016/j.jallcom.2017.02.231
  • Grigorov, K. G., Grigorov, G. I., Drajeva, L., Bouchier, D., Sporken, R., & Caudano, R. (1998). Synthesis and characterization of conductive titanium monoxide films. Diffusion of silicon in titanium monoxide films.
  • Kao, C. H., Yeh, S. W., Huang, H. L., Gan, D., & Shen, P. (2011). Study of the TiO to anatase transformation by thermal oxidation of Ti film in air. Journal of Physical Chemistry C, 115(13), 5648–5656. doi.org/10.1021/jp109082g
  • Keçebaş, M. A., & Şendur, K. (2018). Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. Journal of the Optical Society of America B, 35(8), 1845. doi.org/10.1364/josab.35.001845
  • L. Wang, X. Hu, & Z. Wang. (2019). Study on the influential factors and whitening mechanism of mineral whiteness. Acta. Petrol. Sin., 35(1), 137–145. Lademann, J., Schanzer, S., Jacobi, U., Schaefer, H., Pflücker, F., Driller, H., Beck, J., Meinke, M., Roggan, A., & Sterry, W. (2005). Synergy effects between organic and inorganic UV filters in sunscreens. Journal of Biomedical Optics, 10(1), 014008. doi.org/10.1117/1.1854112
  • Lai, C. L., Huang, H. L., Shen, J. H., Wang, K. K., & Gan, D. (2015). The formation of anatase TiO2 from TiO nanocrystals in sol-gel process. Ceramics International, 41(3), 5041–5048. doi.org/10.1016/j.ceramint.2014.12.072
  • Li, X., Wang, L., Pei, Y., & Jiang, J. (2014). Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property. Thin Solid Films, 571(P1), 127–133. doi.org/10.1016/j.tsf.2014.10.047
  • Li, Y., Xiong, J., Hodgson, P. D., & Wen, C. (2010). Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. Journal of Alloys and Compounds, 494(1–2), 323–329. doi.org/10.1016/j.jallcom.2010.01.026
  • Mcneil, L. E., & French, R. H. (2000). MULTIPLE SCATTERING FROM RUTILE TiO 2 PARTICLES. In Acta mater (Vol. 48). www.elsevier.com/locate/actamat
  • Méndez-Lozano, N., Apátiga-Castro, M., Manzano-Ramírez, A., Rivera-Muñoz, E. M., Velázquez-Castillo, R., Alberto-González, C., & Zamora-Antuñano, M. (2020). Morphological study of TiO₂ thin films doped with cobalt by Metal Organic Chemical Vapor Deposition. Results in Physics, 16. doi.org/10.1016/j.rinp.2019.102891
  • Meng, X., Zhang, Z., Luo, N., Cao, S., & Yang, M. (2011). Transparent poly(methyl methacrylate)/TiO2 nanocomposites for UV-shielding applications. Polymer Science - Series A, 53(10), 977–983. doi.org/10.1134/S0965545X11100099
  • Nguyen, T. T. N., Chen, Y. H., & He, J. L. (2014). Preparation of inkjet-printed titanium monoxide as p-type absorber layer for photovoltaic purposes. Thin Solid Films, 572, 8–14. doi.org/10.1016/j.tsf.2014.09.054
  • Okinaka, N., & Akiyama, T. (2006). Latent property of defect-controlled metal oxide: Nonstoichiometric titanium oxides as prospective material for high-temperature thermoelectric conversion. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45(9 A), 7009–7010. doi.org/10.1143/JJAP.45.7009
  • Ou, C., Hou, J., Wei, T. R., Jiang, B., Jiao, S., Li, J. F., & Zhu, H. (2015). High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect. NPG Asia Materials, 7(5). doi.org/10.1038/am.2015.36
  • Popov, A. P., Priezzhev, A. v., Lademann, J., & Myllylä, R. (2005). TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. Journal of Physics D: Applied Physics, 38(15), 2564–2570. doi.org/10.1088/0022-3727/38/15/006
  • Popov, I. S., Enyashin, A. N., & Rempel, A. A. (2018). Size dependent content of structural vacancies within TiO nanoparticles: Quantum-chemical DFTB study. Superlattices and Microstructures, 113, 459–465. doi.org/10.1016/j.spmi.2017.11.031
  • Scierka, S., Drzal, P. L., Forster, A. L., & Svetlik, S. (2005). Nanomechanical Properties of UV Degraded TiO 2 /Epoxy Nanocomposites.
  • Shi, W., Lin, Y., Zhang, S., Tian, R., Liang, R., Wei, M., Evans, D. G., & Duan, X. (2013). Study on UV-shielding mechanism of layered double hydroxide materials. Physical Chemistry Chemical Physics, 15(41), 18217–18222. doi.org/10.1039/c3cp52819g
  • Supriyanto, A., Nandani, Wahyuningsih, S., & Ramelan, A. H. (2018). Effect of sintering on transparent TiO2 18NR-T type thin films as the working electrode for transparent solar cells. IOP Conference Series: Materials Science and Engineering, 333(1). doi.org/10.1088/1757-899X/333/1/012028
  • Tauc. (1974). AMORPHOUS AND LIQUID SEMICONDUCTORS Edited by PLENUM PRESS. LONDON AND NEW YORK. 1974.
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019a). Surface and electro-optical properties of amorphous Sb 2 S 3 thin films. Applied Physics A: Materials Science and Processing, 125(3). doi.org/10.1007/s00339-019-2475-2
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019b). The impact of pH on the structural, surface, electrical and optical properties of nanostructured PbSe thin films. Materials Research Express, 6(7). doi.org/10.1088/2053-1591/ab1675
  • Tseng, W. J., & Chao, P. S. (2013). Synthesis and photocatalysis of TiO2 hollow spheres by a facile template-implantation route. Ceramics International, 39(4), 3779–3787. doi.org/10.1016/j.ceramint.2012.10.217
  • Wang, Y., Mo, Z., Zhang, C., Zhang, P., Guo, R., Gou, H., Hu, R., & Wei, X. (2015). Morphology-controllable 3D flower-like TiO2 for UV shielding application. Journal of Industrial and Engineering Chemistry, 32, 172–177. doi.org/10.1016/j.jiec.2015.08.013
  • Wang, Z., Xu, B., Yang, J., Yang, B., Xiong, H., Yang, G., & Wang, F. (2020). Investigation on preparation porous titanium through calciothermic reduction of porous TiO precursors. Journal of Materials Research and Technology, 9(6), 13137–13146. doi.org/10.1016/j.jmrt.2020.09.052
  • Wasielewski, R., Mazur, P., Grodzicki, M., & Ciszewski, A. (2015). TiO thin films on GaN(0001). Physica Status Solidi (B) Basic Research, 252(5), 1001–1005. doi.org/10.1002/pssb.201451480
  • Wen, C. E., Yamada, Y., Nouri, A., & Hodgson, P. D. (2007). Porous Titanium with Porosity Gradients for Biomedical Applications. Materials Science Forum, 539–543, 720–725. doi.org/10.4028/www.scientific.net/msf.539-543.720
  • Xu, L., Shen, Y., Ding, Y., & Wang, L. (2018). Superhydrophobic and Ultraviolet-Blocking Cotton Fabrics Based on TiO 2 /SiO 2 Composite Nanoparticles . Journal of Nanoscience and Nanotechnology, 18(10), 6879–6886. doi.org/10.1166/jnn.2018.15463
  • Xue, W., Krishna, B. V., Bandyopadhyay, A., & Bose, S. (2007). Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia, 3(6), 1007–1018. doi.org/10.1016/j.actbio.2007.05.009
  • Zayat, M., Garcia-Parejo, P., & Levy, D. (2007). Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chemical Society Reviews, 36(8), 1270–1281. doi.org/10.1039/b608888k
  • Zhang, J., Ren, X., Li, D., Dong, Z., Wang, J., Ren, L., Xue, B., & Li, F. (2021). Enhanced ultraviolet shielding performances of TiO₂ nanorods in different crystalline structures and illite-loaded composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608. doi.org/10.1016/j.colsurfa.2020.125532
  • Zhang, Y., Li, S., Huang, F., Wang, F., Duan, W., Li, J., Shen, Y., & Xie, A. (2012). Functionalization of cotton fabrics with rutile TiO 2 nanoparticles: Applications for superhydrophobic, UV-shielding and self-cleaning properties. Russian Journal of Physical Chemistry A, 86(3), 413–417. doi.org/10.1134/S0036024412030375
  • Zhao, Q., Tan, T., Qi, P., Wang, S., Bian, S., Li, X., An, Y., & Liu, Z. (2011). Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays. Applied Surface Science, 257(8), 3499–3503. doi.org/10.1016/j.apsusc.2010.11.056
  • Zhuang, S., Xu, X., Yu, J., Feng, B., Xu, W., & Hu, J. (2014). Transparent SnO2 QDs-based multifunctional glass for ultraviolet-blocking and enhanced hydrophobicity. Materials Letters, 128, 291–294. doi.org/10.1016/j.matlet.2014.04.158

Daldırma Metodu ile Üretilen TiO İnce Filmlerin Derişime Bağlı Elektriksel, Optik ve Yapısal Analizi

Year 2022, Volume: 14 Issue: 2, 590 - 603, 31.07.2022
https://doi.org/10.29137/umagd.1070390

Abstract

Bu çalışmada, farklı derişimlerde (A1: 0,8 Molar, A2: 1,25x10-2 Molar, A3: 2,5x10-3 Molar) hazırlanan çözeltilere 2 şer kez 5 saniye daldırma metodu (Dip-coating) ile cam lameller üzerine TiO ince filmleri üretilmiştir ve üretilen bu filmler 500 °C’ de tavlanmıştır. Genel olarak amorf yapıya sahip bu filmlerin 2θ = 25,5° (1 0 1) Miller yönelim pikinde yayılma görülmüştür. Derişimin azalması ile küçük taneli yapılar, küresel şekilden daha irili ufaklı elipse doğru değişim göstermiştir. UV bölgede yansıtma özelliği oldukça fazla iken 400-700 nm görünür bölgede ise geçirgenlikleri oldukça fazladır. A1, A2 ve A3 derişimli TiO ince filmlerin enerji bant aralığı değerleri sırası ile Eg = 3,52 eV; 2,60 eV ve 3,03 eV olarak hesaplanmıştır. Derişimin artması ile elektriksel özdirenç değerlerinin artması, oksit alt tabakalardaki özel iletkenlikten dolayı metal benzeri tipik bir davranış gösterdiğinin kanıtıdır.

References

  • Cacucci, A., Heintz, O., Tsiaoussis, I., Avril, L., Potin, V., Imhoff, L., & Martin, N. (2014). Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers. Thin Solid Films, 553, 47–51. doi.org/10.1016/j.tsf.2013.11.053
  • Cacucci, A., Tsiaoussis, I., Potin, V., Imhoff, L., Martin, N., & Nyberg, T. (2013). The interdependence of structural and electrical properties in TiO 2/TiO/Ti periodic multilayers. Acta Materialia, 61(11), 4215–4225. doi.org/10.1016/j.actamat.2013.03.047
  • Cao, T., Xu, K., Chen, G., & Guo, C. Y. (2013). Poly(ethylene terephthalate) nanocomposites with a strong UV-shielding function using UV-absorber intercalated layered double hydroxides. RSC Advances, 3(18), 6282–6285. doi.org/10.1039/c3ra23321a
  • Chen, Z., Zhong, W., Liang, Z., Li, W., Li, W., He, G., Wang, Y., Xie, Y., & He, Q. (2014). Photocatalytic activity enhancement of anatase TiO2 by using TiO. Journal of Nanomaterials, 2014. doi.org/10.1155/2014/298619
  • Comini, E., Sberveglieri, G., Ferroni, M., Guidi, V., & Martinelli, G. (2000). NO monitoring with a novel p-type material: TiO. In Sensors and Actuators B (Vol. 68). www.elsevier.nlrlocatersensorb
  • de Wild, M., Zimmermann, S., Rüegg, J., Schumacher, R., Fleischmann, T., Ghayor, C., & Weber, F. E. (2016). Influence of Microarchitecture on Osteoconduction and Mechanics of Porous Titanium Scaffolds Generated by Selective Laser Melting. 3D Printing and Additive Manufacturing, 3(3), 143–151. doi.org/10.1089/3dp.2016.0004
  • Dong, Z., Ling, M., Jiang, Y., Han, M., Ren, G., Zhang, J., Ren, X., Li, F., & Xue, B. (2019). Preparation and properties of TiO2/illite composites synthesized at different hydrothermal pH values. Chemical Physics, 525. doi.org/10.1016/j.chemphys.2019.110394
  • Fan, J., Fàbrega, C., Zamani, R. R., Hao, Y., Parra, A., Andreu, T., Arbiol, J., Boschloo, G., Hagfeldt, A., Morante, J. R., & Cabot, A. (2013). Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO Heterostructures with a cobalt(II/III) redox electrolyte. ACS Applied Materials and Interfaces, 5(20), 9872–9877. doi.org/10.1021/am402344d
  • Fan, X., Feng, B., Di, Y., Lu, X., Duan, K., Wang, J., & Weng, J. (2012). Preparation of bioactive TiO film on porous titanium by micro-arc oxidation. Applied Surface Science, 258(19), 7584–7588. doi.org/10.1016/j.apsusc.2012.04.093
  • Ganesh, V., Alizadeh, M., Shuhaimi, A., Adreen, A., Pandikumar, A., Jayakumar, M., Huang, N. M., Ramesh, R., Baskar, K., & Rahman, S. A. (2017). Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 706, 629–636. doi.org/10.1016/j.jallcom.2017.02.231
  • Grigorov, K. G., Grigorov, G. I., Drajeva, L., Bouchier, D., Sporken, R., & Caudano, R. (1998). Synthesis and characterization of conductive titanium monoxide films. Diffusion of silicon in titanium monoxide films.
  • Kao, C. H., Yeh, S. W., Huang, H. L., Gan, D., & Shen, P. (2011). Study of the TiO to anatase transformation by thermal oxidation of Ti film in air. Journal of Physical Chemistry C, 115(13), 5648–5656. doi.org/10.1021/jp109082g
  • Keçebaş, M. A., & Şendur, K. (2018). Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. Journal of the Optical Society of America B, 35(8), 1845. doi.org/10.1364/josab.35.001845
  • L. Wang, X. Hu, & Z. Wang. (2019). Study on the influential factors and whitening mechanism of mineral whiteness. Acta. Petrol. Sin., 35(1), 137–145. Lademann, J., Schanzer, S., Jacobi, U., Schaefer, H., Pflücker, F., Driller, H., Beck, J., Meinke, M., Roggan, A., & Sterry, W. (2005). Synergy effects between organic and inorganic UV filters in sunscreens. Journal of Biomedical Optics, 10(1), 014008. doi.org/10.1117/1.1854112
  • Lai, C. L., Huang, H. L., Shen, J. H., Wang, K. K., & Gan, D. (2015). The formation of anatase TiO2 from TiO nanocrystals in sol-gel process. Ceramics International, 41(3), 5041–5048. doi.org/10.1016/j.ceramint.2014.12.072
  • Li, X., Wang, L., Pei, Y., & Jiang, J. (2014). Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property. Thin Solid Films, 571(P1), 127–133. doi.org/10.1016/j.tsf.2014.10.047
  • Li, Y., Xiong, J., Hodgson, P. D., & Wen, C. (2010). Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. Journal of Alloys and Compounds, 494(1–2), 323–329. doi.org/10.1016/j.jallcom.2010.01.026
  • Mcneil, L. E., & French, R. H. (2000). MULTIPLE SCATTERING FROM RUTILE TiO 2 PARTICLES. In Acta mater (Vol. 48). www.elsevier.com/locate/actamat
  • Méndez-Lozano, N., Apátiga-Castro, M., Manzano-Ramírez, A., Rivera-Muñoz, E. M., Velázquez-Castillo, R., Alberto-González, C., & Zamora-Antuñano, M. (2020). Morphological study of TiO₂ thin films doped with cobalt by Metal Organic Chemical Vapor Deposition. Results in Physics, 16. doi.org/10.1016/j.rinp.2019.102891
  • Meng, X., Zhang, Z., Luo, N., Cao, S., & Yang, M. (2011). Transparent poly(methyl methacrylate)/TiO2 nanocomposites for UV-shielding applications. Polymer Science - Series A, 53(10), 977–983. doi.org/10.1134/S0965545X11100099
  • Nguyen, T. T. N., Chen, Y. H., & He, J. L. (2014). Preparation of inkjet-printed titanium monoxide as p-type absorber layer for photovoltaic purposes. Thin Solid Films, 572, 8–14. doi.org/10.1016/j.tsf.2014.09.054
  • Okinaka, N., & Akiyama, T. (2006). Latent property of defect-controlled metal oxide: Nonstoichiometric titanium oxides as prospective material for high-temperature thermoelectric conversion. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45(9 A), 7009–7010. doi.org/10.1143/JJAP.45.7009
  • Ou, C., Hou, J., Wei, T. R., Jiang, B., Jiao, S., Li, J. F., & Zhu, H. (2015). High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect. NPG Asia Materials, 7(5). doi.org/10.1038/am.2015.36
  • Popov, A. P., Priezzhev, A. v., Lademann, J., & Myllylä, R. (2005). TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. Journal of Physics D: Applied Physics, 38(15), 2564–2570. doi.org/10.1088/0022-3727/38/15/006
  • Popov, I. S., Enyashin, A. N., & Rempel, A. A. (2018). Size dependent content of structural vacancies within TiO nanoparticles: Quantum-chemical DFTB study. Superlattices and Microstructures, 113, 459–465. doi.org/10.1016/j.spmi.2017.11.031
  • Scierka, S., Drzal, P. L., Forster, A. L., & Svetlik, S. (2005). Nanomechanical Properties of UV Degraded TiO 2 /Epoxy Nanocomposites.
  • Shi, W., Lin, Y., Zhang, S., Tian, R., Liang, R., Wei, M., Evans, D. G., & Duan, X. (2013). Study on UV-shielding mechanism of layered double hydroxide materials. Physical Chemistry Chemical Physics, 15(41), 18217–18222. doi.org/10.1039/c3cp52819g
  • Supriyanto, A., Nandani, Wahyuningsih, S., & Ramelan, A. H. (2018). Effect of sintering on transparent TiO2 18NR-T type thin films as the working electrode for transparent solar cells. IOP Conference Series: Materials Science and Engineering, 333(1). doi.org/10.1088/1757-899X/333/1/012028
  • Tauc. (1974). AMORPHOUS AND LIQUID SEMICONDUCTORS Edited by PLENUM PRESS. LONDON AND NEW YORK. 1974.
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019a). Surface and electro-optical properties of amorphous Sb 2 S 3 thin films. Applied Physics A: Materials Science and Processing, 125(3). doi.org/10.1007/s00339-019-2475-2
  • Tezel, N. S., Tezel, F. M., & Kariper, I. A. (2019b). The impact of pH on the structural, surface, electrical and optical properties of nanostructured PbSe thin films. Materials Research Express, 6(7). doi.org/10.1088/2053-1591/ab1675
  • Tseng, W. J., & Chao, P. S. (2013). Synthesis and photocatalysis of TiO2 hollow spheres by a facile template-implantation route. Ceramics International, 39(4), 3779–3787. doi.org/10.1016/j.ceramint.2012.10.217
  • Wang, Y., Mo, Z., Zhang, C., Zhang, P., Guo, R., Gou, H., Hu, R., & Wei, X. (2015). Morphology-controllable 3D flower-like TiO2 for UV shielding application. Journal of Industrial and Engineering Chemistry, 32, 172–177. doi.org/10.1016/j.jiec.2015.08.013
  • Wang, Z., Xu, B., Yang, J., Yang, B., Xiong, H., Yang, G., & Wang, F. (2020). Investigation on preparation porous titanium through calciothermic reduction of porous TiO precursors. Journal of Materials Research and Technology, 9(6), 13137–13146. doi.org/10.1016/j.jmrt.2020.09.052
  • Wasielewski, R., Mazur, P., Grodzicki, M., & Ciszewski, A. (2015). TiO thin films on GaN(0001). Physica Status Solidi (B) Basic Research, 252(5), 1001–1005. doi.org/10.1002/pssb.201451480
  • Wen, C. E., Yamada, Y., Nouri, A., & Hodgson, P. D. (2007). Porous Titanium with Porosity Gradients for Biomedical Applications. Materials Science Forum, 539–543, 720–725. doi.org/10.4028/www.scientific.net/msf.539-543.720
  • Xu, L., Shen, Y., Ding, Y., & Wang, L. (2018). Superhydrophobic and Ultraviolet-Blocking Cotton Fabrics Based on TiO 2 /SiO 2 Composite Nanoparticles . Journal of Nanoscience and Nanotechnology, 18(10), 6879–6886. doi.org/10.1166/jnn.2018.15463
  • Xue, W., Krishna, B. V., Bandyopadhyay, A., & Bose, S. (2007). Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia, 3(6), 1007–1018. doi.org/10.1016/j.actbio.2007.05.009
  • Zayat, M., Garcia-Parejo, P., & Levy, D. (2007). Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chemical Society Reviews, 36(8), 1270–1281. doi.org/10.1039/b608888k
  • Zhang, J., Ren, X., Li, D., Dong, Z., Wang, J., Ren, L., Xue, B., & Li, F. (2021). Enhanced ultraviolet shielding performances of TiO₂ nanorods in different crystalline structures and illite-loaded composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608. doi.org/10.1016/j.colsurfa.2020.125532
  • Zhang, Y., Li, S., Huang, F., Wang, F., Duan, W., Li, J., Shen, Y., & Xie, A. (2012). Functionalization of cotton fabrics with rutile TiO 2 nanoparticles: Applications for superhydrophobic, UV-shielding and self-cleaning properties. Russian Journal of Physical Chemistry A, 86(3), 413–417. doi.org/10.1134/S0036024412030375
  • Zhao, Q., Tan, T., Qi, P., Wang, S., Bian, S., Li, X., An, Y., & Liu, Z. (2011). Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays. Applied Surface Science, 257(8), 3499–3503. doi.org/10.1016/j.apsusc.2010.11.056
  • Zhuang, S., Xu, X., Yu, J., Feng, B., Xu, W., & Hu, J. (2014). Transparent SnO2 QDs-based multifunctional glass for ultraviolet-blocking and enhanced hydrophobicity. Materials Letters, 128, 291–294. doi.org/10.1016/j.matlet.2014.04.158
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Articles
Authors

Necmi Serkan Tezel 0000-0001-9127-301X

Fatma Meydaneri Tezel 0000-0003-1546-875X

Afşin Kariper 0000-0001-9127-301X

Publication Date July 31, 2022
Submission Date February 9, 2022
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Tezel, N. S., Meydaneri Tezel, F., & Kariper, A. (2022). Daldırma Metodu ile Üretilen TiO İnce Filmlerin Derişime Bağlı Elektriksel, Optik ve Yapısal Analizi. International Journal of Engineering Research and Development, 14(2), 590-603. https://doi.org/10.29137/umagd.1070390

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.