Research Article
BibTex RIS Cite

Effect of Barium Addition on Some Mechanical Properties Deduced from Vickers Hardness Tests of Bi-2212 Ceramics

Year 2024, Volume: 16 Issue: 1, 56 - 65, 31.01.2024
https://doi.org/10.29137/umagd.1372306

Abstract

In this study, the variations of the basic mechanical performance properties (microhardness (Hv), elastic modulus, hardness shear modulus, brittleness index, yield strength, elastic hardness coefficient, fracture toughness, ductility, flexibility and durability) of new Bi2.1-xBaxSr2.0Ca1.1Cu2.0Oy (Bi-2212) superconducting materials produced by doping different amounts (ranging from 0.0≤x≤0.1) of barium ions into the crystal matrix of Bi-2212 superconducting material were investigated in detail by microindentation Vickers hardness (Hv) tests in the applied load range 0.245N-2.940 N. In addition, the change of resistance to crack propagation, durable tetragonal phase, mechanical efficiency and mechanical characteristics of the Bi-2212 ceramic system with Ba/Bi partial substitution in the crystal structure was determined. According to experimental and theoretical findings, the overall mechanical performance of the Bi-2212 superconducting crystal structure increased significantly up to the Ba/Bi replacement level of x=0.01, while a systematic reduction was observed after this substitution ratio. Furthermore, the optimum presence of barium in the crystal lattice let to the formation of new slip systems within the structure, new bond formations between atoms, reduction of stress regions on the surface and rise at strength and fracture toughness. Besides, the optimum level resulted in improved material crystal quality and intergranular bonding. When the mechanical characteristic behavior was examined, it was found that all materials presented the typical indentation size effect (ISE) characteristic and there was a significant improvement in ISE characteristic at the optimum replacement ratio.

References

  • Abdeen, W., Marahba, S., Awad, R., Abou Aly, A. I., Ibrahim, I. H., & Matar, M. (2016). Electrical and mechanical properties of (Bi, Pb)-2223 substituted by holmium. Journal of Advanced Ceramics, 5, 54-69. doi.org/10.1007/s40145-015-0173-x
  • Akkurt, B., Erdem, U., Zalaoglu, Y., Ulgen, A. T., Turgay, T., & Yildirim, G. (2021). Evaluation of crystallographic and electrical-superconducting features of Bi-2223 advanced ceramics with vanadium addition, J. Mater. Sci. Mater. Electron. 32, 5035–5049.
  • Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical review, 108(5), 1175. doi.org/10.1103/PhysRev.108.1175
  • Callister Jr, W. D. (2007). Materials science and engineering an introduction.
  • Chen, M., Paul, W., Lakner, M., Donzel, L., Hoidis, M., Unternaehrer, P., Weder, R & Mendik, M. (2002). 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor. Physica C: Superconductivity, 372, 1657-1663. doi.org/10.1016/S0921-4534(02)01096-1
  • Chen, X., Gou, H., Chen, Y., Jiang, S., Zhang, M., Pang, Z., & Shen, B. (2022). Superconducting fault current limiter (SFCL) for a power electronic circuit: experiment and numerical modelling. Superconductor Science and Technology, 35(4), 045010. doi.org/10.1088/1361-6668/ac5504
  • Dogruer, M., Yildirim, G., & Terzioglu, C. (2022). Evolution of electrical, superconducting, crystallinity and structural features with aliovalent Nd/Sr replacement in Bi-2223 ceramics. Materials Chemistry and Physics, 288, 126350. doi.org/10.1016/j.matchemphys.2022.126350
  • Erdem, U., Akkurt, B., Ulgen, A. T., Zalaoglu, Y., Turgay, T., & Yildirim, G. (2021) Effect of annealing ambient conditions on crack formation mechanisms of bulk Bi-2212 ceramic systems, J. Asian Ceram. Soc. 9, 1214-1227.
  • Ghahfarokhi, S. M., & Shoushtari, M. Z. (2010). Structural and physical properties of Cd-doped Bi1. 64Pb0. 36Sr2Ca2− xCdxCu3Oy superconductor. Physica B: Condensed Matter, 405(22), 4643-4649. doi.org/10.1016/j.physb.2010.08.053
  • Ginzburg, V. L., & Andryushin, E. A. (2004). Superconductivity (Revised Edition). World Scientific.
  • Hannachi, E., Slimani, Y., Ekicibil, A. H. M. E. T., Manikandan, A., & Azzouz, F. B. (2019). Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. Journal of Materials Science: Materials in Electronics, 30, 8805-8813. doi.org/10.1007/s10854-019-01205-3
  • Hermann, A.M. Yakhmi, J.V. (1994). Thallium-Based High-Temperature Superconductors. Marcel Dekker.
  • Maeda, H., Tanaka, Y., Fukutomi, M., & Asano, T. (1988). A new high-Tc oxide superconductor without a rare earth element. Japanese Journal of Applied Physics, 27(2A), L209. doi.org/10.1143/JJAP.27.L209
  • Meissner, W., & Ochsenfeld, R. (1933). Ein neuer effekt bei eintritt der supraleitfähigkeit.  Naturwissenschaften, 21(44), 787-788.
  • Oh, S. Y., Kim, H. R., Jeong, Y. H., Hyun, O. B., & Kim, C. J. (2007). Joining of Bi-2212 high-Tc superconductors and metals using indium solders. Physica C: Superconductivity and its applications, 463, 464-467. doi.org/10.1016/j.physc.2007.05.040
  • Onnes, H. K. (1911). Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. In KNAW, Proceedings (Vol. 13, pp. 1910-1911).
  • Onnes, H. K. (1912). Further experiments with Liquid Helium G. On the electrical resistance of Pure Metals etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 14, 818-821.
  • Orhan, E., Kara, E., Kaya, Ş., Doğan, M. U., Terzioğlu, R., Yildirim, G., & Terzioğlu, C. (2022). Refinement of some basic features of Zr surface-layered Bi-2223 superconductor with diffusion annealing temperature. Journal of Materials Science: Materials in Electronics, 33(26), 20696-20712. doi.org/10.1007/s10854-022-08880-9
  • Parinov, I. A. (2013). Microstructure and properties of high-temperature superconductors. Springer Science & Business Media.
  • Rhee, C. K., Kim, C. J., Lee, H. G., Kuk, I. H., Lee, J. M., Chang, I. S., ... & Won, D. Y. (1989). Effects of Pb content on the formation of the high-Tc phase in the (Bi, Pb)-Sr-Ca-Cu-O system. Japanese journal of applied physics, 28(7A), L1137. doi.org/10.1143/JJAP.28.L1137
  • Sarkar, A. K., Maartense, I., Peterson, T. L., & Kumar, B. (1989). Preparation and characterization of superconducting phases in the Bi (Pb)‐Sr‐Ca‐Cu‐O system. Journal of Applied Physics, 66(8), 3717-3722. doi.org/10.1063/1.344056
  • Slimani, Y., Almessiere, M. A., Hannachi, E., Baykal, A., Manikandan, A., Mumtaz, M., & Azzouz, F. B. (2019). Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 45(2), 2621-2628. doi.org/10.1016/j.ceramint.2018.10.201
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., & Yildirim, G. (2019). Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution. Ceramics International, 45(17), 22912-22919. doi.org/10.1016/j.ceramint.2019.07.334
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., Akkurt, B., & Yildirim, G. (2019). Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches. Ceramics International, 45(17), 21183-21192.
  • Yildirim, G., Varilci, A., Akdogan, M., & Terzioglu, C. (2012). Role of annealing time and temperature on structural and superconducting properties of (Bi, Pb)-2223 thin films produced by sputtering. Journal of Materials Science: Materials in Electronics, 23, 928-935.doi.org/10.1007/s10854-011-0522-7
  • Yousefi, S. R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh‐Oghaz, M., & Salavati‐Niasari, M. (2021). Dy2BaCuO5/Ba4DyCu3O9. 09 S‐scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. Journal of the American Ceramic Society, 104(7), 2952-2965. doi.org/10.1111/jace.17696
  • Zalaoglu, Y., Erdem, U., Bolat, F. C., Akkurt, B., Turgay, T., & Yildirim, G. (2021). Improvement in fundamental electronic properties of Bi-2212 electroceramics with trivalent Bi/Tm substitution: a combined experimental and empirical model approach. Journal of Materials Science: Materials in Electronics, 1-13.

Bi-2212 Seramiklerinin Vickers Sertlik Testlerinden Çıkarılan Bazı Mekanik Özellikler Üzerine Barium Katkısının Etkisi

Year 2024, Volume: 16 Issue: 1, 56 - 65, 31.01.2024
https://doi.org/10.29137/umagd.1372306

Abstract

Bu çalışmada Bi2.1Sr2.0Ca1.1Cu2.0Oy (Bi-2212) süperiletken malzemesinin kristal matrisine farklı miktarlarda (0,0≤x≤0,1 arasında değişen) baryum iyonu katkılayıp üretilen yeni Bi-2212 materyallerin temel mekanik performans özelliklerinin (mikro sertlik (Hv), elastik modülü, sertlik kayma modülü, kırılganlık indeksi, akma dayanımı, elastik sertlik katsayısı, kırılma tokluğu, süneklik, esneklik ve dayanıklılık) değişimleri 0,245N-2,940 N uygulanan yük aralığında mikroindentasyon Vickers sertlik (Hv) testleri ile detaylı bir şekilde incelenmiştir. Ayrıca, kristal yapıya Ba/Bi kısmi yer değiştirme ile Bi-2212 seramik sistemin çatlak ilerlemesine karşı direnç, dayanıklı tetragonal faz, mekanik verim ve mekanik karakteristik özelliklerin değişimi belirlenmiştir. Deneysel ve teorik bulgulara göre, Bi-2212 süperiletken kristal yapının genel mekanik performansı Ba/Bi yer değiştirme miktarı x=0,01’e kadar önemli miktarda artarken bu yer değiştirme oranından sonra sistematik bir azalma gözlemlenmiştir. Bu bağlamda optimum düzeyde katkılanan baryum kristal yapıdaki dislokasyon hareketlerini kısıtladığı ve dislokasyon çevresindeki kafes şekil değişimine neden olduğu bulunmuştur. Dahası, optimum miktar materyal kristal kalitesinin ve taneler arasındaki bağlantının iyileşmesine neden olmuştur. Mekanik karakteristik davranışlarına incelendiğinde, tüm materyallerin tipi çentik boyut etkisi (ÇBE) karakterini sunduğu ve optimum yer değiştirme durumunda ÇBE karakteristiğinde ciddi bir gelişme olduğu bulunmuştur.

References

  • Abdeen, W., Marahba, S., Awad, R., Abou Aly, A. I., Ibrahim, I. H., & Matar, M. (2016). Electrical and mechanical properties of (Bi, Pb)-2223 substituted by holmium. Journal of Advanced Ceramics, 5, 54-69. doi.org/10.1007/s40145-015-0173-x
  • Akkurt, B., Erdem, U., Zalaoglu, Y., Ulgen, A. T., Turgay, T., & Yildirim, G. (2021). Evaluation of crystallographic and electrical-superconducting features of Bi-2223 advanced ceramics with vanadium addition, J. Mater. Sci. Mater. Electron. 32, 5035–5049.
  • Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical review, 108(5), 1175. doi.org/10.1103/PhysRev.108.1175
  • Callister Jr, W. D. (2007). Materials science and engineering an introduction.
  • Chen, M., Paul, W., Lakner, M., Donzel, L., Hoidis, M., Unternaehrer, P., Weder, R & Mendik, M. (2002). 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor. Physica C: Superconductivity, 372, 1657-1663. doi.org/10.1016/S0921-4534(02)01096-1
  • Chen, X., Gou, H., Chen, Y., Jiang, S., Zhang, M., Pang, Z., & Shen, B. (2022). Superconducting fault current limiter (SFCL) for a power electronic circuit: experiment and numerical modelling. Superconductor Science and Technology, 35(4), 045010. doi.org/10.1088/1361-6668/ac5504
  • Dogruer, M., Yildirim, G., & Terzioglu, C. (2022). Evolution of electrical, superconducting, crystallinity and structural features with aliovalent Nd/Sr replacement in Bi-2223 ceramics. Materials Chemistry and Physics, 288, 126350. doi.org/10.1016/j.matchemphys.2022.126350
  • Erdem, U., Akkurt, B., Ulgen, A. T., Zalaoglu, Y., Turgay, T., & Yildirim, G. (2021) Effect of annealing ambient conditions on crack formation mechanisms of bulk Bi-2212 ceramic systems, J. Asian Ceram. Soc. 9, 1214-1227.
  • Ghahfarokhi, S. M., & Shoushtari, M. Z. (2010). Structural and physical properties of Cd-doped Bi1. 64Pb0. 36Sr2Ca2− xCdxCu3Oy superconductor. Physica B: Condensed Matter, 405(22), 4643-4649. doi.org/10.1016/j.physb.2010.08.053
  • Ginzburg, V. L., & Andryushin, E. A. (2004). Superconductivity (Revised Edition). World Scientific.
  • Hannachi, E., Slimani, Y., Ekicibil, A. H. M. E. T., Manikandan, A., & Azzouz, F. B. (2019). Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. Journal of Materials Science: Materials in Electronics, 30, 8805-8813. doi.org/10.1007/s10854-019-01205-3
  • Hermann, A.M. Yakhmi, J.V. (1994). Thallium-Based High-Temperature Superconductors. Marcel Dekker.
  • Maeda, H., Tanaka, Y., Fukutomi, M., & Asano, T. (1988). A new high-Tc oxide superconductor without a rare earth element. Japanese Journal of Applied Physics, 27(2A), L209. doi.org/10.1143/JJAP.27.L209
  • Meissner, W., & Ochsenfeld, R. (1933). Ein neuer effekt bei eintritt der supraleitfähigkeit.  Naturwissenschaften, 21(44), 787-788.
  • Oh, S. Y., Kim, H. R., Jeong, Y. H., Hyun, O. B., & Kim, C. J. (2007). Joining of Bi-2212 high-Tc superconductors and metals using indium solders. Physica C: Superconductivity and its applications, 463, 464-467. doi.org/10.1016/j.physc.2007.05.040
  • Onnes, H. K. (1911). Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. In KNAW, Proceedings (Vol. 13, pp. 1910-1911).
  • Onnes, H. K. (1912). Further experiments with Liquid Helium G. On the electrical resistance of Pure Metals etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 14, 818-821.
  • Orhan, E., Kara, E., Kaya, Ş., Doğan, M. U., Terzioğlu, R., Yildirim, G., & Terzioğlu, C. (2022). Refinement of some basic features of Zr surface-layered Bi-2223 superconductor with diffusion annealing temperature. Journal of Materials Science: Materials in Electronics, 33(26), 20696-20712. doi.org/10.1007/s10854-022-08880-9
  • Parinov, I. A. (2013). Microstructure and properties of high-temperature superconductors. Springer Science & Business Media.
  • Rhee, C. K., Kim, C. J., Lee, H. G., Kuk, I. H., Lee, J. M., Chang, I. S., ... & Won, D. Y. (1989). Effects of Pb content on the formation of the high-Tc phase in the (Bi, Pb)-Sr-Ca-Cu-O system. Japanese journal of applied physics, 28(7A), L1137. doi.org/10.1143/JJAP.28.L1137
  • Sarkar, A. K., Maartense, I., Peterson, T. L., & Kumar, B. (1989). Preparation and characterization of superconducting phases in the Bi (Pb)‐Sr‐Ca‐Cu‐O system. Journal of Applied Physics, 66(8), 3717-3722. doi.org/10.1063/1.344056
  • Slimani, Y., Almessiere, M. A., Hannachi, E., Baykal, A., Manikandan, A., Mumtaz, M., & Azzouz, F. B. (2019). Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 45(2), 2621-2628. doi.org/10.1016/j.ceramint.2018.10.201
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., & Yildirim, G. (2019). Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution. Ceramics International, 45(17), 22912-22919. doi.org/10.1016/j.ceramint.2019.07.334
  • Turkoz, M. B., Zalaoglu, Y., Turgay, T., Ozturk, O., Akkurt, B., & Yildirim, G. (2019). Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches. Ceramics International, 45(17), 21183-21192.
  • Yildirim, G., Varilci, A., Akdogan, M., & Terzioglu, C. (2012). Role of annealing time and temperature on structural and superconducting properties of (Bi, Pb)-2223 thin films produced by sputtering. Journal of Materials Science: Materials in Electronics, 23, 928-935.doi.org/10.1007/s10854-011-0522-7
  • Yousefi, S. R., Ghanbari, M., Amiri, O., Marzhoseyni, Z., Mehdizadeh, P., Hajizadeh‐Oghaz, M., & Salavati‐Niasari, M. (2021). Dy2BaCuO5/Ba4DyCu3O9. 09 S‐scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. Journal of the American Ceramic Society, 104(7), 2952-2965. doi.org/10.1111/jace.17696
  • Zalaoglu, Y., Erdem, U., Bolat, F. C., Akkurt, B., Turgay, T., & Yildirim, G. (2021). Improvement in fundamental electronic properties of Bi-2212 electroceramics with trivalent Bi/Tm substitution: a combined experimental and empirical model approach. Journal of Materials Science: Materials in Electronics, 1-13.
There are 27 citations in total.

Details

Primary Language English
Subjects Material Characterization, Material Production Technologies, Manufacturing Metallurgy
Journal Section Articles
Authors

Ali Mercan 0000-0003-4495-3674

Tahsin Turgay 0000-0003-0304-1097

Muhammed Öz 0000-0003-0049-0161

Gürcan Yıldırım 0000-0002-5177-3703

Publication Date January 31, 2024
Submission Date October 6, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Mercan, A., Turgay, T., Öz, M., Yıldırım, G. (2024). Effect of Barium Addition on Some Mechanical Properties Deduced from Vickers Hardness Tests of Bi-2212 Ceramics. International Journal of Engineering Research and Development, 16(1), 56-65. https://doi.org/10.29137/umagd.1372306

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.