Research Article
BibTex RIS Cite
Year 2024, Volume: 1 Issue: 1, 10 - 26, 02.08.2024

Abstract

References

  • Acuner, Ş. A. (2005). Etkili bir risk yönetim sürecinin aşamaları. Riskactive Dergisi, Mart- Nisan, 4-6.
  • Akhilesh, K. B. (2014). R&D Management. Springer INC.
  • Anderson, E.W., Fornell, C. & Lehmann, D.R. (1994). Customer Satisfaction, Market Share, and Profitability: Findings from Sweden. Journal of Marketing. 58(3), 53-66. https://doi.org/10.2307/1252310
  • Aksoy, Y., Özkan, E. & Karanfil, S. (2014). Bulanık Mantığa Giriş (2. Baskı). Yıldız Teknik Üniversitesi Basın-Yayın Merkezi, İstanbul.
  • Arslan, I. (2008). Kurumsal risk yönetimi. Maliye Bakanlığı Strateji Geliştirme Başkanlığı, Ankara.
  • Bai, Y. and Wang, D. (2006) Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications. In: Bai, Y., Zhuang, H. and Wang, D., Eds., Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, Berlin, 17-36. http://dx.doi.org/10.1007/978-1-84628-469-4_2
  • Ballou, B., & Heitger, D. L. (2005). A building-block approach for implementing COSO's enterprise risk management-integrated framework. Management Accounting Quarterly, 6(2), 1.
  • Barutçugil, İ. (2009). Ar-Ge Yönetimi. Kariyer Yayınları, İstanbul.
  • Baykal, N. & Beyan, T. (2004). Bulanık Mantık – İlke ve Temelleri. Bıçaklar Kitapevi, Ankara.
  • Carlsson, C., Johansson, A.K., Alvan, G., Bergman, K. & Kühler, T. (2006). Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Science of The Total Environment, 364, (1–3), 67-87. https://doi.org/10.1016/j.scitotenv.2005.06.035.
  • Celayir, D. (2011). İç denetimde riskin değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul, Türkiye.
  • Daft, R. L. (1991). Management, Sec. Edit., Dryden, Press, USA.
  • Derici, O., Tüysüz, Z. & Sarı, A. (2007). Kurumsal risk yönetimi ve Sayıştay uygulaması. Sayıştay Dergisi, 65, 151-172. https://dergipark.org.tr/tr/pub/sayistay/issue/61522/918940
  • Fırat, P. (2009). Proje risk yönetiminde olgunluk seviyesi için yeni bir yaklaşım. Thesis Dissertation, İstanbul
  • Heidenberger, K. & Stummer, C. (1999). Research and development project selection and resource allocation: A review of quantitative modelling approaches. International Journal of Management Reviews. 1(2), 197 - 224. doi: 10.1111/1468-2370.00012.
  • Hertz, D. B. & Howard, T. (1983). Risk Analysis and its Applications, Singapore Management University Iansiti, M. & West, J. (1997). Technology Integration: Turning Great Research into Great Products. Harvard Business Review, 75, 69-79.
  • Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications. Addison Wesley Publishing Company, Boston.
  • Karabacak, B. ve Soğukpınar, I. (2004). ISRAM: Information security risk analysis method. Computers & Security, 24, 147-159. https://doi.org/10.1016/j.cose.2004.07.004
  • Kayım, A. (2006). Kurumsal risk yönetimi ve iç denetimin kurumsal risk yönetimindeki rolü. Riskactive Dergisi, Ekim-Kasım-Aralık.
  • Keskin D. A. (2006). İç Kontrol Sistemi Kontrol Öz Değerlendirme. Beta Yayınevi, İstanbul.
  • Kunhimangalam, R., Ovallath, S. & Joseph, P. (2013). A Novel Fuzzy Expert System for the Identification of Severity of Carpal Tunnel Syndrome. BioMed research international. 2013. 846780. https://doi.org/10.1155/2013/846780
  • Mamdani, E. H. (1977). Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis," in IEEE Transactions on Computers, C-26(12), 1182-1191. doi: 10.1109/TC.1977.1674779.
  • Mazlum, M. (2014). CPM, PERT ve bulanık mantık teknikleriyle proje yönetimi ve bir işletmede uygulanması. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Özkul, F. U. & Özdemir, Z. (2014). Çalışan hilelerinin önlenmesinde proaktif yaklaşımlar: Kurumsal işletmelerde insan kaynakları yöneticileri üzerine nitel bir araştırma. Öneri Dergisi, 10(40), 75-89. https://doi.org/10.14783/od.v10i40.1012000348
  • Pehlivanlı, D. (2010). Modern İç Denetim. İstanbul, Beta Yayınları.
  • Roussel, P. & Kamal, N. (1991). Managing Innovation and Entrepreneurship in Technology. John Wiley & Sons, Inc.
  • Şafak, R. E., Şensöğüt, C., & Kasap, Y. (2018). Açık ocak işletmelerinde iş güvenliği uygulaması: Örnek ocak çalışması. Scientific Mining Journal, 57, 99-108. https://doi.org/10.30797/madencilik.493320
  • Tavana, M. & Hajipour, V. (2020). A Practical Review and Taxonomy of Fuzzy Expert Systems Methods and Applications. Benchmarking An International Journal. 27. 81-136. doi: 10.1108/BIJ-04-2019-0178.
  • Thaker, S. and Nagori, V. (2018). Analysis of Fuzzification Process in Fuzzy Expert System. Procedia Computer Science, 132, 1308-1316. https://doi.org/10.1016/j.procs.2018.05.047
  • Tolga, A. Ç. & Kahraman, C. (2009. Ar-Ge projelerinin gerçek opsiyon değerleme bütünleşik bulanık çok ölçütlü modelle seçimi, İTÜ Fen Bilimleri Enstitüsü, 8(4), 95-106.
  • Tripathi, K. P. (2011). A Study of Information Systems in Human Resource Management (HRM). International Journal of Computer Applications, 22, 9-13. https://doi.org/10.5120/2606-3635
  • Vaughan, L. (1999). Precluding Wrongfulness or Responsibility: A Plea for Excuses. European Journal of International Law, 10, 405-411.
  • Vorster, A. & Labuschagne, L. (2005). A framework for comparing different information security risk analysis methodologies. Proceedings of the 2005 annual research conference of the SAICSIT '05, 95-103.
  • Wang, C. (2015). A study of membership functions on Mamdani-type fuzzy inference system for industrial decision-making. PhD Thesis, Lehigh University, Bethlehem, USD.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, A. L. (1975). The concept of a linguistic variable and its application to approximate reasoning. I, II, III. Information Sciences, 199 - 249. https://doi.org/10.1016/0020-0255(75)90036-5
  • Zimmermann, H. J. (2001). Fuzzy Set Theory and Its Applications. Springer, New York.

Risk Analysis with Fuzzy Logic in R&D Projects

Year 2024, Volume: 1 Issue: 1, 10 - 26, 02.08.2024

Abstract

Since the beginning of the 1950s, it has been seen that Research and Development (R&D) and its projects have touched almost every aspect of life and have changed life. These projects make a great contribution to the development and change of humanity in all fields of work. This developments and changes include pros and cons. There are many gray areas in these projects where many unknowns are discovered or known ones are developed. These gray areas also contain risks due to the nature of obscurity. Therefore, measuring the impact of these risks is very important for the success of the project. To date, many different studies have been carried out in this area where more than one risk analysis method is applied. In this study, it is aimed to calculate the risk analysis on MATLAB using the fuzzy logic method for an R&D laboratory in the food sector in Turkey, in the R&D projects. By gathering the experts in the R&D center, it has been determined which of the risk classes in the literature are suitable for this center, and the project risk has been chosen as the output value. Afterwards, the risk output has been calculated with the established fuzzy system, and the results have been evaluated on the sample scenarios. In this way, the risks and uncertainties included in R&D projects, which are always known, have been made concrete and their visibility has been facilitated.

References

  • Acuner, Ş. A. (2005). Etkili bir risk yönetim sürecinin aşamaları. Riskactive Dergisi, Mart- Nisan, 4-6.
  • Akhilesh, K. B. (2014). R&D Management. Springer INC.
  • Anderson, E.W., Fornell, C. & Lehmann, D.R. (1994). Customer Satisfaction, Market Share, and Profitability: Findings from Sweden. Journal of Marketing. 58(3), 53-66. https://doi.org/10.2307/1252310
  • Aksoy, Y., Özkan, E. & Karanfil, S. (2014). Bulanık Mantığa Giriş (2. Baskı). Yıldız Teknik Üniversitesi Basın-Yayın Merkezi, İstanbul.
  • Arslan, I. (2008). Kurumsal risk yönetimi. Maliye Bakanlığı Strateji Geliştirme Başkanlığı, Ankara.
  • Bai, Y. and Wang, D. (2006) Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications. In: Bai, Y., Zhuang, H. and Wang, D., Eds., Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, Berlin, 17-36. http://dx.doi.org/10.1007/978-1-84628-469-4_2
  • Ballou, B., & Heitger, D. L. (2005). A building-block approach for implementing COSO's enterprise risk management-integrated framework. Management Accounting Quarterly, 6(2), 1.
  • Barutçugil, İ. (2009). Ar-Ge Yönetimi. Kariyer Yayınları, İstanbul.
  • Baykal, N. & Beyan, T. (2004). Bulanık Mantık – İlke ve Temelleri. Bıçaklar Kitapevi, Ankara.
  • Carlsson, C., Johansson, A.K., Alvan, G., Bergman, K. & Kühler, T. (2006). Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Science of The Total Environment, 364, (1–3), 67-87. https://doi.org/10.1016/j.scitotenv.2005.06.035.
  • Celayir, D. (2011). İç denetimde riskin değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul, Türkiye.
  • Daft, R. L. (1991). Management, Sec. Edit., Dryden, Press, USA.
  • Derici, O., Tüysüz, Z. & Sarı, A. (2007). Kurumsal risk yönetimi ve Sayıştay uygulaması. Sayıştay Dergisi, 65, 151-172. https://dergipark.org.tr/tr/pub/sayistay/issue/61522/918940
  • Fırat, P. (2009). Proje risk yönetiminde olgunluk seviyesi için yeni bir yaklaşım. Thesis Dissertation, İstanbul
  • Heidenberger, K. & Stummer, C. (1999). Research and development project selection and resource allocation: A review of quantitative modelling approaches. International Journal of Management Reviews. 1(2), 197 - 224. doi: 10.1111/1468-2370.00012.
  • Hertz, D. B. & Howard, T. (1983). Risk Analysis and its Applications, Singapore Management University Iansiti, M. & West, J. (1997). Technology Integration: Turning Great Research into Great Products. Harvard Business Review, 75, 69-79.
  • Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications. Addison Wesley Publishing Company, Boston.
  • Karabacak, B. ve Soğukpınar, I. (2004). ISRAM: Information security risk analysis method. Computers & Security, 24, 147-159. https://doi.org/10.1016/j.cose.2004.07.004
  • Kayım, A. (2006). Kurumsal risk yönetimi ve iç denetimin kurumsal risk yönetimindeki rolü. Riskactive Dergisi, Ekim-Kasım-Aralık.
  • Keskin D. A. (2006). İç Kontrol Sistemi Kontrol Öz Değerlendirme. Beta Yayınevi, İstanbul.
  • Kunhimangalam, R., Ovallath, S. & Joseph, P. (2013). A Novel Fuzzy Expert System for the Identification of Severity of Carpal Tunnel Syndrome. BioMed research international. 2013. 846780. https://doi.org/10.1155/2013/846780
  • Mamdani, E. H. (1977). Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis," in IEEE Transactions on Computers, C-26(12), 1182-1191. doi: 10.1109/TC.1977.1674779.
  • Mazlum, M. (2014). CPM, PERT ve bulanık mantık teknikleriyle proje yönetimi ve bir işletmede uygulanması. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Özkul, F. U. & Özdemir, Z. (2014). Çalışan hilelerinin önlenmesinde proaktif yaklaşımlar: Kurumsal işletmelerde insan kaynakları yöneticileri üzerine nitel bir araştırma. Öneri Dergisi, 10(40), 75-89. https://doi.org/10.14783/od.v10i40.1012000348
  • Pehlivanlı, D. (2010). Modern İç Denetim. İstanbul, Beta Yayınları.
  • Roussel, P. & Kamal, N. (1991). Managing Innovation and Entrepreneurship in Technology. John Wiley & Sons, Inc.
  • Şafak, R. E., Şensöğüt, C., & Kasap, Y. (2018). Açık ocak işletmelerinde iş güvenliği uygulaması: Örnek ocak çalışması. Scientific Mining Journal, 57, 99-108. https://doi.org/10.30797/madencilik.493320
  • Tavana, M. & Hajipour, V. (2020). A Practical Review and Taxonomy of Fuzzy Expert Systems Methods and Applications. Benchmarking An International Journal. 27. 81-136. doi: 10.1108/BIJ-04-2019-0178.
  • Thaker, S. and Nagori, V. (2018). Analysis of Fuzzification Process in Fuzzy Expert System. Procedia Computer Science, 132, 1308-1316. https://doi.org/10.1016/j.procs.2018.05.047
  • Tolga, A. Ç. & Kahraman, C. (2009. Ar-Ge projelerinin gerçek opsiyon değerleme bütünleşik bulanık çok ölçütlü modelle seçimi, İTÜ Fen Bilimleri Enstitüsü, 8(4), 95-106.
  • Tripathi, K. P. (2011). A Study of Information Systems in Human Resource Management (HRM). International Journal of Computer Applications, 22, 9-13. https://doi.org/10.5120/2606-3635
  • Vaughan, L. (1999). Precluding Wrongfulness or Responsibility: A Plea for Excuses. European Journal of International Law, 10, 405-411.
  • Vorster, A. & Labuschagne, L. (2005). A framework for comparing different information security risk analysis methodologies. Proceedings of the 2005 annual research conference of the SAICSIT '05, 95-103.
  • Wang, C. (2015). A study of membership functions on Mamdani-type fuzzy inference system for industrial decision-making. PhD Thesis, Lehigh University, Bethlehem, USD.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zadeh, A. L. (1975). The concept of a linguistic variable and its application to approximate reasoning. I, II, III. Information Sciences, 199 - 249. https://doi.org/10.1016/0020-0255(75)90036-5
  • Zimmermann, H. J. (2001). Fuzzy Set Theory and Its Applications. Springer, New York.
There are 37 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Article
Authors

Oğuzhan Sarıyurt 0000-0001-5899-9644

Ali Kılıç 0000-0003-2777-0876

Hüseyin Ali Sarıkaya 0000-0001-5072-5067

Ayhan Aydoğdu 0000-0001-9812-4287

Early Pub Date July 25, 2024
Publication Date August 2, 2024
Submission Date July 17, 2024
Acceptance Date July 21, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Sarıyurt, O., Kılıç, A., Sarıkaya, H. A., Aydoğdu, A. (2024). Risk Analysis with Fuzzy Logic in R&D Projects. Uygulamalı Mühendislik Ve Tarım Dergisi, 1(1), 10-26.