Review
BibTex RIS Cite
Year 2023, Volume: 2 Issue: 2, 65 - 78, 30.12.2023

Abstract

References

  • Agrell, J., McDonald, E.P., Lindroth, R.L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88(2): 259-272.
  • Agrimonti, C., Lauro, M., Visioli, G. 2021. Smart agriculture for food quality: facing climate change in the 21st century. Critical Reviews in Food Science and Nutrition, 61(6): 971-981.
  • Al‐Ghussain, L. 2019. Global warming: Review on driving forces and mitigation. Environmental Progress and Sustainable Energy, 38(1): 13-21.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L, Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1): 1-16.
  • Basaran, F., Akcin, Z.T.A. 2022. Effects of temperature factor on plants and high heat stress. Garden, 51(2): 139-147.
  • Bauwe, H., Hagemann, M., Fernie, A.R. 2010. Photorespiration: players, partners and origin. Trends in Plant Science, 15(6): 330-336.
  • Beach, R.H., Sulser, T.B., Crimmins, A., Cenacchi, N., Cole, J., Fukagawa, N.K., Mason-D'Croz, D., Myers, S., Sarofim, M.C., Smith, M., Ziska, L.H. 2019.
  • Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health, 3(7): e307-e317.
  • Bebber, D.P., Ramotowski, M.A., Gurr, S.J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3(11): 985-988.
  • Boisvenue, C., Running, S.W. 2006. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12(5): 862-882.
  • Capone, R., Bilali, H.E., Debs, P., Cardone, G., Driouech, N. 2014. Food system sustainability and food security: connecting the dots. Journal of Food Security, 2(1): 13-22.
  • Caulfield, F., Bunce, J.A. 1994. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology, 23(4): 999-1005.
  • Ceylan, F. 2019. Determination of anatomical, physiological and molecular differences during the transition from C3 cotyledon to C4 leaves in the same individual plant of some species in salsoloıdeae subfamıly. Ph.D. Thesis. Kahramanmaraş Sütçü İmam University, Institute of Science and Technology.n
  • Climate Change: Definition, Causes & Effects [Internet]. Anonim, 2023. [cited December 25 2023]. Available from: https://ecolife.com/dictionary/climate-change/
  • Conroy, J.P. 1992. Influence of elevated atmospheric CO2 concentrations on plant nutrition. Australian Journal of Botany, 40(5): 445-456.
  • Dreyfus, G.B., Xu, Y., Shindell, D.T., Zaelke, D., Ramanathan, V. 2022. Mitigating climate disruption in time: A self-consistent approach for avoiding both near-term and long-term global warming. Proceedings of the National Academy of Sciences, 119(22): e2123536119.
  • Dumont, B., Andueza, D., Niderkorn, V., Lüscher, A., Porqueddu, C., Picon-Cochar, C. 2015. A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas. Grass and Forage Science, 70(2): 239–254.
  • Edwards, E. J., Smith, S.A. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences, 107(6): 2532-2537.
  • Erkovan, H.I. Tan, M., Halitligil, M.B., Kışlal, H. 2008. Performance of white-clover grasses mixtures: Part-I Dry matter production, botanical composition, nitrogen use efficient, nitrogen rate and yield. Asian Journal of Chemistry, 20(5): 4071-4076.
  • Gowik, U., Westhoff, P. 2011. The path from C3 to C4 photosynthesis. Plant Physiology, 155(1): 56-63.
  • Hall, A.E., Allen Jr, L.H. 1993. Designing cultivars for the climatic conditions of the next century. International Crop Science I, 291-297.
  • Hall, A.E., Ziska, L.H. 2000. Crop breeding strategies for the 21st century. Climate Change and Global Crop Productivity, 407-423.
  • Hatipoğlu, R., Avcı, M., Çınar, S. 2019. Effects of climate change on the grasslands. Turkish Journal of Agriculture-Food Science and Technology, 7(12): 2282-2290.
  • International Plant Protection Convention [Internet]. IPPC, 2022. [cited 2022 December 01]. Available from: https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf.
  • Kalonya, D.H. 2022. The importance of pasture lands ın climate change mitigation and adaptation processes. Journal of Environment, City and Climate, 1(1): 128-157.
  • Karaman, S., Gökalp, Z. 2010. Küresel Isınma ve İklim Değişikliğinin Su Kaynakları Üzerine Etkileri. Tarım Bilimleri Araştırma Dergisi, (1): 59-66.
  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations 1. Agronomy Journal, 75(5): 779-788.
  • Kowalczyk, E.A., Wang, Y.P., Law, R.M., Davies, H.L., McGregor, J.L., Abramowitz, G. 2006. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper, 13: 42.
  • Kweku, D.W., Bismark, O., Maxwell, A., Desmond, K.A., Danso, K.B., Oti-Mensah, E.A., Quachie, A.T., Adormaa, B.B. 2018. Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6): 1-9.
  • Leakey, A.D., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., Ort, D.R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10): 2859-2876.
  • Leakey, A.D.B. 2009. Rising atmospheric carbon dioxide concentration and the future of C-4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences 276: 2333–2343.
  • Lu, Y., Zhang, Y., Hong, Y., He, L., Chen, Y. 2022. Experiences and lessons from Agri-Food system transformation for sustainable food security: A review of China’s practices. Foods, 11(2): 137.
  • Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453(7193): 379-382.
  • Martínez‐Goñi, X.S., Robredo, A., Pérez‐López, U., Muñoz‐Rueda, A., Mena‐Petite, A. 2023. Sorghum bicolor prioritizes the recovery of its photosynthetic activity when re‐watered after severe drought stress, while manages to preserve it under elevated CO2 and drought. Journal of Agronomy and Crop Science, 209(2): 217-227.
  • Masle, J. 2000. The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol, 122(4): 1399–1415.
  • Mathew, M.D. 2022. Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 143, 104080.
  • Montzka, S.A., Dlugokencky, E.J., Butler, J.H. 2011. Non-CO2 greenhouse gases and climate change. Nature, 476(7358): 43-50. Moore, P.D. 1983. Plants and the palaeoatmosphere. Journal of the Geological Society, 140(1): 13-25. Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D. 2009. The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6): 971-986.
  • Nwankwoala, H.N.L. 2015. Causes of climate and environmental changes: the need for environmental-friendly education policy in Nigeria. Journal of Education and Practice, 6(30): 224-234.
  • Omer, A.M. 2008. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9): 2265-2300.
  • Osborne, C.P., Freckleton, R.P. 2009. Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences, 276(1663): 1753-1760.
  • Ors, S., Ekinci, M. 2015. Drought stress and plant physiology. Derim, 32(2): 237-250.
  • Pathak, M.R., Abido, M.S. 2014. The role of biotechnology in the conservation of biodiversity. Journal of Experimental Biology, 2(4): 352-363.
  • Peter, S.C. 2018. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Letters, 3(7): 1557-1561.
  • Petrov, M. 2022. The evolution of albedo values of the Earth-atmosphere system under the influence of carbon dioxide pollutant concentrations. Industry 4.0, 7(1): 36-41.
  • Poorter, H., Perez-Soba, M. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129(1): 1–20.
  • Prasad, J.S., Muthukumar, P., Desai, F., Basu, D.N., Rahman, M.M. 2019. A critical review of high-temperature reversible thermochemical energy storage systems. Applied Energy, 254, 113733.
  • Reddy, K.R., Hodges, H.F. 2000. Climate change and global crop productivity. 1st ed. CABI.
  • Sage, R. F., Sharkey, T.D., Seemann, J.R. (1989). Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology, 89(2): 590-596.
  • Sage, R.F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology, 3(03): 202-213.
  • Sage, R.F. 2013. Photorespiratory compensation: a driver for biological diversity. Plant Biology, 15(4): 624-638.
  • Sage, R.F., Pearcy, R.W. 1987. The nitrogen use efficiency of C3 and C4 plants: II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 84(3): 959-963.
  • Saglam, N.E., Duzgunes, E., Balık, I. 2008. Global warming and climatic changes. Ege Journal of Fisheries and Aquatic Sciences, 25(1): 89-94.
  • Sangeetha, B.P., Kumar, N., Ambalgi, A.P., Haleem, S.L.A., Thilagam, K., Vijayakumar, P. 2022. IOT based smart irrigation management system for environmental sustainability in India. Sustainable Energy Technologies and Assessments, 52, 101973.
  • Saxena, P., Naik, V. 2018. Air pollution: sources, impacts and controls. 1st. ed. CABI.
  • Seneweera, S. 2011. Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions, 6(1): 35–42
  • Sharwood, R.E., Ghannoum, O., Kapralov, M.V., Gunn, L.H., Whitney, S.M. 2016. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2(12): 1-9.
  • Sonmez, M.C., Ozgur, R., Uzilday, B., Turkan, I., Ganie, S.A. 2022. Redox regulation in C3 and C4 plants during climate change and its implications on food security. Food and Energy Security, 12(2): e387.
  • Sparks, T.H., Jeffree, E.P., Jeffree, C.E. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44: 82-87.
  • Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia, 110: 539-545.
  • Stange, G., Monro, J., Stowe, S., Osmond, C.B. 1995. The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia, 102: 341-352.
  • Steffen, W., Crutzen, P.J., McNeill, J.R. 2007. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio-Journal of Human Environment Research and Management, 36(8): 614-621.
  • Turkish Statistical Institute [Internet]. TUIK, 2023. [cited 2023 December 15]. Available from: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-2.Tahmini-2023-49533.
  • Uddling, J., Broberg, M.C., Feng, Z., Pleijel, H. 2018. Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology, 45: 262–267.
  • Uzilday, B., Turkan, I., Ozgur, R., Sekmen, A.H. 2014. Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. Journal of Plant Physiology, 171(1): 65-75.
  • Wang, Y., Frei, M. 2011. Stressed food–The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems and Environment, 141(3-4): 271-286.
  • Way, D.A. 2012. What lies between: the evolution of stomatal traits on the road to C4 photosynthesis. New Phytologist, 193(2): 291-293.
  • Way, D.A., Katul, G.G., Manzoni, S., Vico, G. 2014. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany, 65(13): 3683-3693.
  • Wuebbles, D.J., Jain, A.K. 2001. Concerns about climate change and the role of fossil fuel use. Fuel Processing Technology, 71(1-3): 99-119.
  • Xiao, G., Zhang, Q., Wang, R., Xiong, Y. 2009. Effects of elevated CO2 concentration, supplemental irrigation and nitrogenous fertilizer application on rain-fed spring wheat yield. Acta Ecologica Sinica, 29(4): 205-210.
  • Yang, Z., Zhang, Z., Zhang, T., Fahad, S., Cui, K., Nie, L., Peng, S., Huang, J. 2017. The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Frontiers in Plant Science, 8,1908.
  • Yavas, I., Unay, A. 2018. Effects of global climate change on photosynthesis. Adnan Menderes University Faculty of Agriculture Journal, 15(2): 95-99.

Global Climate Change and Crop Production

Year 2023, Volume: 2 Issue: 2, 65 - 78, 30.12.2023

Abstract

Uncontrolled emissions of greenhouse gases and other air pollutants due to industrialisation and land use change are causing global warming and climate change. Elevated CO2 triggers global warming by absorbing infrared radiation and warming the Earth's atmosphere. Increased CO2 and higher temperatures interact with C3 and C4 plants and affect plant growth and productivity through changes in various physiological and biochemical processes. Photosynthesis is affected by various physiological mechanism such as photorespiration, stomatal conductance, water use efficiency, transpiration and phenological processes. Therefore, it is expected that reduced crop quality and productivity would be a challenge in terms of food security for future generations. For this reason, it is necessary to develop adaptation strategies to ensure sustainable agricultural production. Thus, improving plants adaptation ability to environmental and geographical conditions is now an important issue to preclude reduced crop quality and yield loss. This reviews examines the physiological effects of global climate change on plants and determines the measures that can be taken for this situation.

References

  • Agrell, J., McDonald, E.P., Lindroth, R.L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88(2): 259-272.
  • Agrimonti, C., Lauro, M., Visioli, G. 2021. Smart agriculture for food quality: facing climate change in the 21st century. Critical Reviews in Food Science and Nutrition, 61(6): 971-981.
  • Al‐Ghussain, L. 2019. Global warming: Review on driving forces and mitigation. Environmental Progress and Sustainable Energy, 38(1): 13-21.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L, Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1): 1-16.
  • Basaran, F., Akcin, Z.T.A. 2022. Effects of temperature factor on plants and high heat stress. Garden, 51(2): 139-147.
  • Bauwe, H., Hagemann, M., Fernie, A.R. 2010. Photorespiration: players, partners and origin. Trends in Plant Science, 15(6): 330-336.
  • Beach, R.H., Sulser, T.B., Crimmins, A., Cenacchi, N., Cole, J., Fukagawa, N.K., Mason-D'Croz, D., Myers, S., Sarofim, M.C., Smith, M., Ziska, L.H. 2019.
  • Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. The Lancet Planetary Health, 3(7): e307-e317.
  • Bebber, D.P., Ramotowski, M.A., Gurr, S.J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3(11): 985-988.
  • Boisvenue, C., Running, S.W. 2006. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12(5): 862-882.
  • Capone, R., Bilali, H.E., Debs, P., Cardone, G., Driouech, N. 2014. Food system sustainability and food security: connecting the dots. Journal of Food Security, 2(1): 13-22.
  • Caulfield, F., Bunce, J.A. 1994. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology, 23(4): 999-1005.
  • Ceylan, F. 2019. Determination of anatomical, physiological and molecular differences during the transition from C3 cotyledon to C4 leaves in the same individual plant of some species in salsoloıdeae subfamıly. Ph.D. Thesis. Kahramanmaraş Sütçü İmam University, Institute of Science and Technology.n
  • Climate Change: Definition, Causes & Effects [Internet]. Anonim, 2023. [cited December 25 2023]. Available from: https://ecolife.com/dictionary/climate-change/
  • Conroy, J.P. 1992. Influence of elevated atmospheric CO2 concentrations on plant nutrition. Australian Journal of Botany, 40(5): 445-456.
  • Dreyfus, G.B., Xu, Y., Shindell, D.T., Zaelke, D., Ramanathan, V. 2022. Mitigating climate disruption in time: A self-consistent approach for avoiding both near-term and long-term global warming. Proceedings of the National Academy of Sciences, 119(22): e2123536119.
  • Dumont, B., Andueza, D., Niderkorn, V., Lüscher, A., Porqueddu, C., Picon-Cochar, C. 2015. A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas. Grass and Forage Science, 70(2): 239–254.
  • Edwards, E. J., Smith, S.A. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences, 107(6): 2532-2537.
  • Erkovan, H.I. Tan, M., Halitligil, M.B., Kışlal, H. 2008. Performance of white-clover grasses mixtures: Part-I Dry matter production, botanical composition, nitrogen use efficient, nitrogen rate and yield. Asian Journal of Chemistry, 20(5): 4071-4076.
  • Gowik, U., Westhoff, P. 2011. The path from C3 to C4 photosynthesis. Plant Physiology, 155(1): 56-63.
  • Hall, A.E., Allen Jr, L.H. 1993. Designing cultivars for the climatic conditions of the next century. International Crop Science I, 291-297.
  • Hall, A.E., Ziska, L.H. 2000. Crop breeding strategies for the 21st century. Climate Change and Global Crop Productivity, 407-423.
  • Hatipoğlu, R., Avcı, M., Çınar, S. 2019. Effects of climate change on the grasslands. Turkish Journal of Agriculture-Food Science and Technology, 7(12): 2282-2290.
  • International Plant Protection Convention [Internet]. IPPC, 2022. [cited 2022 December 01]. Available from: https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf.
  • Kalonya, D.H. 2022. The importance of pasture lands ın climate change mitigation and adaptation processes. Journal of Environment, City and Climate, 1(1): 128-157.
  • Karaman, S., Gökalp, Z. 2010. Küresel Isınma ve İklim Değişikliğinin Su Kaynakları Üzerine Etkileri. Tarım Bilimleri Araştırma Dergisi, (1): 59-66.
  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations 1. Agronomy Journal, 75(5): 779-788.
  • Kowalczyk, E.A., Wang, Y.P., Law, R.M., Davies, H.L., McGregor, J.L., Abramowitz, G. 2006. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper, 13: 42.
  • Kweku, D.W., Bismark, O., Maxwell, A., Desmond, K.A., Danso, K.B., Oti-Mensah, E.A., Quachie, A.T., Adormaa, B.B. 2018. Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6): 1-9.
  • Leakey, A.D., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., Ort, D.R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10): 2859-2876.
  • Leakey, A.D.B. 2009. Rising atmospheric carbon dioxide concentration and the future of C-4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences 276: 2333–2343.
  • Lu, Y., Zhang, Y., Hong, Y., He, L., Chen, Y. 2022. Experiences and lessons from Agri-Food system transformation for sustainable food security: A review of China’s practices. Foods, 11(2): 137.
  • Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F. 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, 453(7193): 379-382.
  • Martínez‐Goñi, X.S., Robredo, A., Pérez‐López, U., Muñoz‐Rueda, A., Mena‐Petite, A. 2023. Sorghum bicolor prioritizes the recovery of its photosynthetic activity when re‐watered after severe drought stress, while manages to preserve it under elevated CO2 and drought. Journal of Agronomy and Crop Science, 209(2): 217-227.
  • Masle, J. 2000. The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol, 122(4): 1399–1415.
  • Mathew, M.D. 2022. Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 143, 104080.
  • Montzka, S.A., Dlugokencky, E.J., Butler, J.H. 2011. Non-CO2 greenhouse gases and climate change. Nature, 476(7358): 43-50. Moore, P.D. 1983. Plants and the palaeoatmosphere. Journal of the Geological Society, 140(1): 13-25. Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D. 2009. The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6): 971-986.
  • Nwankwoala, H.N.L. 2015. Causes of climate and environmental changes: the need for environmental-friendly education policy in Nigeria. Journal of Education and Practice, 6(30): 224-234.
  • Omer, A.M. 2008. Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9): 2265-2300.
  • Osborne, C.P., Freckleton, R.P. 2009. Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences, 276(1663): 1753-1760.
  • Ors, S., Ekinci, M. 2015. Drought stress and plant physiology. Derim, 32(2): 237-250.
  • Pathak, M.R., Abido, M.S. 2014. The role of biotechnology in the conservation of biodiversity. Journal of Experimental Biology, 2(4): 352-363.
  • Peter, S.C. 2018. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Letters, 3(7): 1557-1561.
  • Petrov, M. 2022. The evolution of albedo values of the Earth-atmosphere system under the influence of carbon dioxide pollutant concentrations. Industry 4.0, 7(1): 36-41.
  • Poorter, H., Perez-Soba, M. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129(1): 1–20.
  • Prasad, J.S., Muthukumar, P., Desai, F., Basu, D.N., Rahman, M.M. 2019. A critical review of high-temperature reversible thermochemical energy storage systems. Applied Energy, 254, 113733.
  • Reddy, K.R., Hodges, H.F. 2000. Climate change and global crop productivity. 1st ed. CABI.
  • Sage, R. F., Sharkey, T.D., Seemann, J.R. (1989). Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology, 89(2): 590-596.
  • Sage, R.F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology, 3(03): 202-213.
  • Sage, R.F. 2013. Photorespiratory compensation: a driver for biological diversity. Plant Biology, 15(4): 624-638.
  • Sage, R.F., Pearcy, R.W. 1987. The nitrogen use efficiency of C3 and C4 plants: II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 84(3): 959-963.
  • Saglam, N.E., Duzgunes, E., Balık, I. 2008. Global warming and climatic changes. Ege Journal of Fisheries and Aquatic Sciences, 25(1): 89-94.
  • Sangeetha, B.P., Kumar, N., Ambalgi, A.P., Haleem, S.L.A., Thilagam, K., Vijayakumar, P. 2022. IOT based smart irrigation management system for environmental sustainability in India. Sustainable Energy Technologies and Assessments, 52, 101973.
  • Saxena, P., Naik, V. 2018. Air pollution: sources, impacts and controls. 1st. ed. CABI.
  • Seneweera, S. 2011. Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions, 6(1): 35–42
  • Sharwood, R.E., Ghannoum, O., Kapralov, M.V., Gunn, L.H., Whitney, S.M. 2016. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2(12): 1-9.
  • Sonmez, M.C., Ozgur, R., Uzilday, B., Turkan, I., Ganie, S.A. 2022. Redox regulation in C3 and C4 plants during climate change and its implications on food security. Food and Energy Security, 12(2): e387.
  • Sparks, T.H., Jeffree, E.P., Jeffree, C.E. 2000. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44: 82-87.
  • Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia, 110: 539-545.
  • Stange, G., Monro, J., Stowe, S., Osmond, C.B. 1995. The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia, 102: 341-352.
  • Steffen, W., Crutzen, P.J., McNeill, J.R. 2007. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio-Journal of Human Environment Research and Management, 36(8): 614-621.
  • Turkish Statistical Institute [Internet]. TUIK, 2023. [cited 2023 December 15]. Available from: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-2.Tahmini-2023-49533.
  • Uddling, J., Broberg, M.C., Feng, Z., Pleijel, H. 2018. Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology, 45: 262–267.
  • Uzilday, B., Turkan, I., Ozgur, R., Sekmen, A.H. 2014. Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. Journal of Plant Physiology, 171(1): 65-75.
  • Wang, Y., Frei, M. 2011. Stressed food–The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems and Environment, 141(3-4): 271-286.
  • Way, D.A. 2012. What lies between: the evolution of stomatal traits on the road to C4 photosynthesis. New Phytologist, 193(2): 291-293.
  • Way, D.A., Katul, G.G., Manzoni, S., Vico, G. 2014. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany, 65(13): 3683-3693.
  • Wuebbles, D.J., Jain, A.K. 2001. Concerns about climate change and the role of fossil fuel use. Fuel Processing Technology, 71(1-3): 99-119.
  • Xiao, G., Zhang, Q., Wang, R., Xiong, Y. 2009. Effects of elevated CO2 concentration, supplemental irrigation and nitrogenous fertilizer application on rain-fed spring wheat yield. Acta Ecologica Sinica, 29(4): 205-210.
  • Yang, Z., Zhang, Z., Zhang, T., Fahad, S., Cui, K., Nie, L., Peng, S., Huang, J. 2017. The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Frontiers in Plant Science, 8,1908.
  • Yavas, I., Unay, A. 2018. Effects of global climate change on photosynthesis. Adnan Menderes University Faculty of Agriculture Journal, 15(2): 95-99.
There are 71 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Reviews
Authors

Meliha Feryal Sarıkaya 0000-0001-7277-1128

Muhammed Tatar 0000-0002-8312-8434

Publication Date December 30, 2023
Submission Date December 20, 2023
Acceptance Date December 25, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Sarıkaya, M. F., & Tatar, M. (2023). Global Climate Change and Crop Production. Uluslararası Sivas Bilim Ve Teknoloji Üniversitesi Dergisi, 2(2), 65-78.