Research Article
BibTex RIS Cite

Dynamic effects of piezoelectric fan on the natural convection in a vertical channel

Year 2024, Volume: 16 Issue: 1, 1 - 10, 24.12.2024
https://doi.org/10.55974/utbd.1459853

Abstract

In this study, the dynamic heat transfer characteristics of a piezoelectric fan (piezo fan) placed in a vertical channel with constant temperature side walls were investigated numerically. One of the piezo fan’s ends is fixed like a cantilever fan, and the other end performs oscillation motion at four different amplitudes and three different frequencies. The operating amplitude of the fan has been varied in such a way as to investigate the temperature distributions, pressure variations, and dynamic mechanisms of the vortices inside the channel. Numerical studies were carried out using a 2-dimensional model in the COMSOL Multiphysics software. Pure natural convection inside the channel is considered as a reference case. The piezo fan’s movement creates high-speed vortices along the flow direction, pushing them onto wall surfaces. Such complex convective mechanisms positively affect heat transfer through the hot wall. Each case’s local and average heat transfer coefficients and Nusselt numbers are compared. As a result, the piezoelectric fan operating with 12 mm amplitude and 20 Hz frequency was determined to be the most effective design with a heat transfer improvement of 169% compared to the natural convection. For the highest amplitude and frequency, the increment in the mass flow rate is up to 180%.

References

  • Choi M, Lee SY, Kim YH. On the flow around a vibrating cantilever pair with different phase angles. European Journal of Mechanics-B/Fluids, 34, 146-157, 2012.
  • Liu SF, Huang RT, Sheu WJ, Wang CC. Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement. International Journal of Heat and Mass Transfer, 52(11-12), 2565-2570, 2009.
  • Wait SM, Basak S, Garimella SV, Raman A. Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Transactions on Components and Packaging Technologies, 30(1), 119-128, 2007.
  • Lin CN. Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053, 2012.
  • Lin CN. Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan. Applied Thermal Engineering, 50(1), 693-703, 2013.
  • Park SH, Oh MH, Kim YH, Choi M. Effects of freestream on piezoelectric fan performance. Journal of Fluids and Structures, 87, 302-318, 2019.
  • Tiwari J, Yeom T. Enhancement of channel-flow convection heat transfer using piezoelectric fans. Applied Thermal Engineering, 191, 116917, 2021.
  • Chen Y, Peng D, Liu Y. Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. International Journal of Heat and Mass Transfer, 147, 118964, 2020.
  • Hasan SI, Küçüka S, Ezan MA. Thermo-fluidic analysis of a single piezo fan in longitudinal channel. International Communications in Heat and Mass Transfer, 129, 105651, 2021.
  • Hasan SI, Küçüka S, Ezan MA. Cooling performance of a piezo fan oscillating in a vertical channel with natural convection. International Communications in Heat and Mass Transfer, 141, 106602, 2023.
  • Sufian SF, Fairuz ZM, Zubair M, Abdullah MZ. Mohamed JJ. Thermal analysis of dual piezoelectric fans for cooling multi-LED packages. Microelectronics Reliability, 54(8), 1534-1543, 2014.
  • Sufian SF, Abdullah MZ. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink. Microelectronics Reliability, 68, 39-50, 2017.
  • Acikalin T, Garimella SV. Analysis and prediction of the thermal performance of piezoelectrically actuated fans. Heat Transfer Engineering, 30(6), 487-498, 2009.
  • Lei T, Jing-Zhou Z, Xiao-Ming T. Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam. International Journal of Thermal Sciences, 80, 93-107, 2014.
  • Wait SM, Basak S, Garimella SV, Raman A. Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Transactions on Components and Packaging Technologies, 30(1), 2007.
  • Kimber M, Suzuki K, Kitsunai N, Seki K, Garimella SV. Pressure and flow rate performance of piezoelectric fans. IEEE Transactions on Components and Packaging Technologies, 32(4), 766–775, 2009.

Düşey kanalda piezoelektrik fanın doğal taşınım üzerindeki dinamik etkileri

Year 2024, Volume: 16 Issue: 1, 1 - 10, 24.12.2024
https://doi.org/10.55974/utbd.1459853

Abstract

Bu çalışmada yanal duvarları sabit sıcaklıkta tutulan düşey bir kanal içerisine yerleştirilen piezoelektrik fanın (piezo fan) dinamik ısı transfer karakteristikleri sayısal olarak incelenmiştir. Piezofanın bir ucu konsol fan gibi sabitlenmiş olup, diğer ucu dört farklı genlik ve üç farklı frekansta salınım hareketi gerçekleştirmektedir. Kanal içindeki sıcaklık dağılımları, basınç değişimleri ve girdapların dinamik mekanizmaları araştırılacak şekilde fanın genliği farklılaştırılmıştır. Sayısal çalışmalar COMSOL Multiphysics yazılımında 2 boyutlu model kullanılarak gerçekleştirilmiştir. Kanal içerisindeki doğal taşınım referans durum olarak ele alınmıştır. Piezo fanın hareketi, akış yönü boyunca yüksek hızda girdaplar oluşturarak bunları duvar yüzeylerine itmektedir. Bu tür karmaşık taşınım mekanizmaları ısıtılan duvardan gerçekleşen ısı transferini olumlu yönde etkilemektedir. Ele alınan tüm durumlar için yerel ve ortalama ısı transfer katsayıları ve Nusselt sayıları karşılaştırmalı olarak sunulmuştur. Sonuç olarak 12 mm genlik ve 20 Hz frekansta çalışan piezoelektrik fanın, doğal taşınıma göre %169 ısı transfer iyileştirmesi ile en etkili tasarım olduğu belirlenmiştir. En yüksek genlik ve frekans için kütlesel debideki artış ise %180 olarak elde edilmiştir.

References

  • Choi M, Lee SY, Kim YH. On the flow around a vibrating cantilever pair with different phase angles. European Journal of Mechanics-B/Fluids, 34, 146-157, 2012.
  • Liu SF, Huang RT, Sheu WJ, Wang CC. Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement. International Journal of Heat and Mass Transfer, 52(11-12), 2565-2570, 2009.
  • Wait SM, Basak S, Garimella SV, Raman A. Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Transactions on Components and Packaging Technologies, 30(1), 119-128, 2007.
  • Lin CN. Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan. International Journal of Heat and Mass Transfer, 55(11-12), 3043-3053, 2012.
  • Lin CN. Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan. Applied Thermal Engineering, 50(1), 693-703, 2013.
  • Park SH, Oh MH, Kim YH, Choi M. Effects of freestream on piezoelectric fan performance. Journal of Fluids and Structures, 87, 302-318, 2019.
  • Tiwari J, Yeom T. Enhancement of channel-flow convection heat transfer using piezoelectric fans. Applied Thermal Engineering, 191, 116917, 2021.
  • Chen Y, Peng D, Liu Y. Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. International Journal of Heat and Mass Transfer, 147, 118964, 2020.
  • Hasan SI, Küçüka S, Ezan MA. Thermo-fluidic analysis of a single piezo fan in longitudinal channel. International Communications in Heat and Mass Transfer, 129, 105651, 2021.
  • Hasan SI, Küçüka S, Ezan MA. Cooling performance of a piezo fan oscillating in a vertical channel with natural convection. International Communications in Heat and Mass Transfer, 141, 106602, 2023.
  • Sufian SF, Fairuz ZM, Zubair M, Abdullah MZ. Mohamed JJ. Thermal analysis of dual piezoelectric fans for cooling multi-LED packages. Microelectronics Reliability, 54(8), 1534-1543, 2014.
  • Sufian SF, Abdullah MZ. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink. Microelectronics Reliability, 68, 39-50, 2017.
  • Acikalin T, Garimella SV. Analysis and prediction of the thermal performance of piezoelectrically actuated fans. Heat Transfer Engineering, 30(6), 487-498, 2009.
  • Lei T, Jing-Zhou Z, Xiao-Ming T. Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam. International Journal of Thermal Sciences, 80, 93-107, 2014.
  • Wait SM, Basak S, Garimella SV, Raman A. Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Transactions on Components and Packaging Technologies, 30(1), 2007.
  • Kimber M, Suzuki K, Kitsunai N, Seki K, Garimella SV. Pressure and flow rate performance of piezoelectric fans. IEEE Transactions on Components and Packaging Technologies, 32(4), 766–775, 2009.
There are 16 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Ozgün Alkım Boz 0009-0003-5448-3108

Serhan Küçüka 0000-0002-2281-561X

Mehmet Akif Ezan 0000-0002-5966-9791

Publication Date December 24, 2024
Submission Date March 27, 2024
Acceptance Date May 9, 2024
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

IEEE O. A. Boz, S. Küçüka, and M. A. Ezan, “Dynamic effects of piezoelectric fan on the natural convection in a vertical channel”, IJTS, vol. 16, no. 1, pp. 1–10, 2024, doi: 10.55974/utbd.1459853.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.