Review
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 148 - 165, 30.12.2024
https://doi.org/10.47137/uujes.1576274

Abstract

References

  • Loyd S. Enhanced sensitivity of photodetection via quantum illumination. Science, 2008; 321(6895): 1463 – 1465.
  • Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, and Shapiro J H. Quantum illumination with Gaussian states. Physical Review Letter, 2008;105(25): 243601.
  • Shapiro J H, and Lloyd S. Quantum illumination versus coherent-state target detection. New Journal of Physics, 2009;11(6): 053045.
  • Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Brida G, and Genovese M. Experimental realization of quantum illumination. Physical Review Letter, 2013;110(15): 156603.
  • Zhao J, Lyons A, Ulku A C, Defienne H, Faccio D, and Charbon E. Light detection and ranging with entangled photons. Optics Express, 2022;30(3): 3675 – 3683.
  • Zhang Z, Mouradian S, Wong F N C, and Shapiro J H. Entanglement-enhanced sensing in a lossy and noisy environment. Physical Review Letter, 2015;114(11): 110506.
  • Frick S, McMillan A, and Rarity J. Quantum rangefinding. Optics Express, 2020;28(25): 37118 – 37128.
  • England D G, Balaji B, and Sussman, B J. Quantum-enhanced standoff detection using correlated photon pairs. Physical Review Letter, 2019;99(2): 023828.
  • Liu H, Giovannini D, He H, England D, Sussman B J, Balaji B, and Helmy A S. Enhancing LIDAR performance metrics using continuous-wave photon-pair sources. Optica, 2019;6(10): 1349 – 1355.
  • He H, Giovannini D, Liu H, Chen E, Yan Z, and Helmy A S. Non-classical semiconductor photon sources enhancing the performance of classical target detection systems. Journal of Lightwave Technology, 2020;38(16): 4540 – 4547.
  • Liu H, Balaji B, and Helmy A S. Target detection aided by quantum temporal correlations: theoretical analysis and experimental validation. IEEE Transactions on Aerospace and Electronic Systems, 2020;56(5): 3529 – 3544.
  • Blakey P S, Liu H, Papangelakis G, Zhang Y, Léger Z M, Iu M L, and Helmy A S. Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar. Nature Communications, 2022;13(1): 5633.
  • Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, and Pirandola S. Microwave quantum illumination. Physical Review Letter, 2015;114(8): 080503.
  • Chang C W S, Vadiraj A M, Bourassa J, Balaji B, and Wilson C M. Quantum-enhanced noise radar. Applied Physics Letter, 2019;114(11): 112601.
  • Luong D, and Balaji B. Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing. IET Radar, Sonar & Navigation, 2020;14(1): 97 - 104.
  • Luong D, Chang S W S, Vadiraj A M, Damini A, Wilson C M, and Balaji B. Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Transactions on Aerospace and Electronic Systems, 2020;56(3): 2041 - 2060.
  • Luong D, Balaji B, and Rajan S. Quantum two-mode squeezing radar and noise radar: correlation coefficient and integration time. IEEE Access, 2020;8: 185544 – 185547.
  • Luong D, Rajan S, and Balaji B. Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection, IEEE Sensors Journal, 2020; 20(10): 5221 – 5228.
  • Barzanjeh S, Pirandola S, Vitali D, and Fink J M. Microwave quantum illumination using digital receiver. Science Advances, 2020;16(9): p.eabb0451.
  • Guha S, and Erkmen B I. Gaussian-state quantum-illumination receivers for target detection. Physical Review A, 2009;80(5): 052310.
  • Norouzi M, Seyed-Yazdi J, Hosseiny S M, and Livreri P. Investigation of the JPA-bandwidth improvement in the performance of the QTMS radar. Entropy, 2023;25(10): 1368.
  • Hosseiny S M, Norouzi M, Seyed-Yazdi J, and Irannezhad F. Purity in the QTMS radar. Physica Scripta, 2023;98(5): 055105.
  • Hosseiny S M, Norouzi M, Seyed-Yazdi J, and Irannezhad F. Performance improvement factors in quantum radar/illumination. Communication in Theoretical Physics, 2023;10(5): 055101.
  • Norouzi M, Hosseiny S M, Seyed-Yazdi J, and Irannezhad F, Observation of the performance enhancement of a non-degenerate JPA versus degenerate JPA in a QTMS radar simulation. Engineering Research Express, 2024;6(1): 015030.
  • Livreri P, Enrico E, Fasolo L, Greco A, Rettaroli A, Vitali D, Farina A, Marchetti C F, and Giacomin A Sq D. Microwave quantum radar using a Josephson traveling wave parametric amplifier. 2022 IEEE Radar Conference (RadarConf2022); 2022 Mar 21-25; New York City, NY, USA. p. 1-5.
  • Qiu J Y, Grimsmo A, Peng K et al. Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier. Nature Physics, 2023;19: 706 - 713.
  • Esposito M, Ranadive A, Planat L et al. Observation of two-mode squeezing in a traveling wave parametric amplifier. Physical Review Letter, 2022;128(15): 153603.
  • Livreri P, Enrico E, Vitali D, and Farina A. Microwave quantum radar using a Josephson traveling wave parametric amplifier and a phase-conjugate receiver for a long-distance detection. 2023 IEEE Radar Conference (RadarConf23); 2023 May 1-5; San Antonio, TX, USA. p. 1-5.
  • Wei R, Li J, Wang W, Ye Z, Zhao C, and Guo Q. Evaluating the detection range of microwave quantum illumination radar. IET Radar Sonar Navigation, 2023;17(11): 1664 - 1673.
  • Sisco B, and Chen K C. Quantum wireless imaging and remote sensing - state-of-the-art technologies and opportunities. 2023 26th International Symposium on Wireless Personal Multimedia Communications (WPMC); 2023 Nov 19-22; Tampa, FL, USA. p. 293 - 298.
  • Luong D, Balaji B, and Rajan S. Biomedical sensing using quantum radars based on Josephson parametric amplifiers. 2021 International Applied Computational Electromagnetics Society Symposium (ACES); 2021 Aug 1-5; Hamilton, ON, Canada. p. 1-4.
  • Pirandola S, Bardhan, B R, Gehring, T, Weedbrook C, and Lloyd S. Advances in photonic quantum sensing. Nature Photonics, 2018;12: 724 - 733.
  • Balaji B. Quantum radar: snake oil or good idea?. 2018 International Carnahan Conference on Security Technology (ICCST), 2018 Oct 22-25; Montreal, QC, Canada. p. 1-7.
  • Shapiro J H. The quantum illumination story. IEEE Aerospace and Electronic Systems Magazine, 2020;35(4): 8 - 20.
  • Slepyan G, Vlasenko S, Mogilevtsev D, and Boag A. Quantum radars and lidars: concepts, realizations, and perspectives. IEEE Antennas and Propagation Magazine, 2022;64(1): 16 - 26.
  • Torromé R G, and Barzanjeh. Advances in quantum radar and LIDAR. Progress in Quantum Electronics, 2023; 93: 100497.
  • Luong D, Balaji B, and Rajan S. Quantum radar: challenges and outlook: an overview of the state of the art. IEEE Microwave Magazine, 2023; 24(9): 61 - 67.
  • Karsa A, Fletcher A, Spedalieri G, and Pirandola S. Quantum illumination and quantum radar: a brief overview. Reports on Progress in Physics, 2024; 87(9): 094001.
  • Lin Y -C, Huang T -W, Tsai P -J, Chen Y -H, Zhong Y -L, and Chang C -R. Advancements in quantum radar technology an overview of experimental methods and quantum electrodynamics considerations. IEEE Nanotechnology Magazine, 2024;18(3): 4 - 14.
  • Walls D F, and G. J. Milburn, Quantum Optics, 2nd edition. Berlin:Springer-Verlag Berlin Heidelberg; 2008.
  • Caves C M, and Schumaker B L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Physical Review A, 1985;31(5): 3068 - 3092.
  • Schumaker B L, and Caves C M. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Physical Review A, 1985;31(5): 3093 - 3111.
  • Lecture Notes: From Nonlinear Optics to Entanglement and Squeezing. [Document on the Internet]; [cited 2024 October 18]. Available from: https://mpl.mpg.de/research-at-mpl/independependent-research-groups/chekhova-research-group/teaching.
  • Fox M. Quantum optics: an introduction. New York:Oxford University Press; 2006.
  • Ghambaryan I A, Guoa R, Hovsepyan R K, Poghosyan A R, Vardanyan E S, and Lazaryan V G. Periodically poled structures in lithium niobate crystals: growth and photoelectric properties. Journal of Optoelectronics and Advanced Materials, 2003; 5(1): 61 - 68.
  • Lithium Niobate, [cited 2024 December 05]. Available from: https://www.tydexoptics.com/pdf/Lithium_Niobate.pdf
  • Lithium Niobate, [cited 2024 December 05]. Available from: https://roditi.com/SingleCrystal/LiNbO3/Magnesium-Doped.html
  • Hum D S, and Fejer M M. Quasi-phasematching. Comptes Rendus - Physique, 2007; 8(2): 180 - 198.
  • Tambasco J-L, Boes A, Helt L G, Steel M J, and Mitchell A. Domain engineering algorithm for practical and effective photon sources, 2016; Optics Express, 24(17): 19616 - 19626.
  • Smith B J, Mahou P, Cohen O, Lundeen J S, and Walmsley I A. Photon pair generation in birefringent optical fibers, 2009; Optics Express 17(26): 23589 - 23602.
  • Orieux A, Versteegh M A M, Jöns K D, and Ducci S. Semiconductor devices for entangled photon pair generation: a review, 2017; Reports on Progress in Physics, 80(7): 076001.
  • Caves C M, and Schumaker B L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states, 1985; Physical Review A, 31(5): 3068 - 3092.
  • Schumaker B L, and Caves C M. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, 1985; Physical Review A, 31(5): 3093 - 3111.
  • Braunstein S L, and van Loock P. Quantum information with continuous variables, 2005; Review of Modern Physics, 77(2): 513 - 577.
  • Weedbrook C, Pirandola S, and García-Patrón R, Cerf N J, Ralph T C, and Shapiro J H, and Lloyd S. Gaussian quantum information, 2012; Review of Modern Physics, 84(2): 621 -669.
  • Abdo B, Kamal A, and Devoret M. Nondegenerate three-wave mixing with the Josephson ring modulator, 2013; Physical Review B, 87(1): 014508.
  • Ulku A C, Bruschini C, Antolović I M, Kuo Y, Ankri R, Weiss S, Michalet X, and Charbon E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE Journal of Selected Topics in Quantum Electronics, 2019; 25(1): 1 - 12.
  • Number of Papers on Quantum Radar. [cited 2024 October 25]. Available from: https://krccorp.net/papers.gif.
  • Number of Authors working on Quantum Radar. [cited 2024 October 25]. Available from: https://krccorp.net/authors.gif.
  • ASELSAN QUANTAL. [Document on the Internet]; [cited 2024 October 25]. Available from: https://www.aselsan.com/en/research-and-development/quantum-technologies.

Quantum Radar: Theory, Limits, and Practical Applications

Year 2024, Volume: 7 Issue: 2, 148 - 165, 30.12.2024
https://doi.org/10.47137/uujes.1576274

Abstract

This paper provides a detailed exploration of quantum radar technology, focusing on the generation, measurement, and theoretical analysis of quantum-correlated signals in both optical and microwave domains. We examine the mechanisms behind producing entangled signals and their application to improve radar sensitivity and accuracy in noisy environments. A review of key studies is presented, with emphasis on their experimental setups and the limitations that define the potential of quantum radar. By aggregating data on object detection range and analyzing global research trends through visualizations, including a bar chart and a world map, we illustrate the growing interest and research efforts in this domain. Our findings highlight the significant advancements and remaining challenges in developing practical quantum radar systems, as well as the worldwide collaboration driving progress in this cutting-edge field.

References

  • Loyd S. Enhanced sensitivity of photodetection via quantum illumination. Science, 2008; 321(6895): 1463 – 1465.
  • Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, and Shapiro J H. Quantum illumination with Gaussian states. Physical Review Letter, 2008;105(25): 243601.
  • Shapiro J H, and Lloyd S. Quantum illumination versus coherent-state target detection. New Journal of Physics, 2009;11(6): 053045.
  • Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Brida G, and Genovese M. Experimental realization of quantum illumination. Physical Review Letter, 2013;110(15): 156603.
  • Zhao J, Lyons A, Ulku A C, Defienne H, Faccio D, and Charbon E. Light detection and ranging with entangled photons. Optics Express, 2022;30(3): 3675 – 3683.
  • Zhang Z, Mouradian S, Wong F N C, and Shapiro J H. Entanglement-enhanced sensing in a lossy and noisy environment. Physical Review Letter, 2015;114(11): 110506.
  • Frick S, McMillan A, and Rarity J. Quantum rangefinding. Optics Express, 2020;28(25): 37118 – 37128.
  • England D G, Balaji B, and Sussman, B J. Quantum-enhanced standoff detection using correlated photon pairs. Physical Review Letter, 2019;99(2): 023828.
  • Liu H, Giovannini D, He H, England D, Sussman B J, Balaji B, and Helmy A S. Enhancing LIDAR performance metrics using continuous-wave photon-pair sources. Optica, 2019;6(10): 1349 – 1355.
  • He H, Giovannini D, Liu H, Chen E, Yan Z, and Helmy A S. Non-classical semiconductor photon sources enhancing the performance of classical target detection systems. Journal of Lightwave Technology, 2020;38(16): 4540 – 4547.
  • Liu H, Balaji B, and Helmy A S. Target detection aided by quantum temporal correlations: theoretical analysis and experimental validation. IEEE Transactions on Aerospace and Electronic Systems, 2020;56(5): 3529 – 3544.
  • Blakey P S, Liu H, Papangelakis G, Zhang Y, Léger Z M, Iu M L, and Helmy A S. Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar. Nature Communications, 2022;13(1): 5633.
  • Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, and Pirandola S. Microwave quantum illumination. Physical Review Letter, 2015;114(8): 080503.
  • Chang C W S, Vadiraj A M, Bourassa J, Balaji B, and Wilson C M. Quantum-enhanced noise radar. Applied Physics Letter, 2019;114(11): 112601.
  • Luong D, and Balaji B. Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing. IET Radar, Sonar & Navigation, 2020;14(1): 97 - 104.
  • Luong D, Chang S W S, Vadiraj A M, Damini A, Wilson C M, and Balaji B. Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Transactions on Aerospace and Electronic Systems, 2020;56(3): 2041 - 2060.
  • Luong D, Balaji B, and Rajan S. Quantum two-mode squeezing radar and noise radar: correlation coefficient and integration time. IEEE Access, 2020;8: 185544 – 185547.
  • Luong D, Rajan S, and Balaji B. Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection, IEEE Sensors Journal, 2020; 20(10): 5221 – 5228.
  • Barzanjeh S, Pirandola S, Vitali D, and Fink J M. Microwave quantum illumination using digital receiver. Science Advances, 2020;16(9): p.eabb0451.
  • Guha S, and Erkmen B I. Gaussian-state quantum-illumination receivers for target detection. Physical Review A, 2009;80(5): 052310.
  • Norouzi M, Seyed-Yazdi J, Hosseiny S M, and Livreri P. Investigation of the JPA-bandwidth improvement in the performance of the QTMS radar. Entropy, 2023;25(10): 1368.
  • Hosseiny S M, Norouzi M, Seyed-Yazdi J, and Irannezhad F. Purity in the QTMS radar. Physica Scripta, 2023;98(5): 055105.
  • Hosseiny S M, Norouzi M, Seyed-Yazdi J, and Irannezhad F. Performance improvement factors in quantum radar/illumination. Communication in Theoretical Physics, 2023;10(5): 055101.
  • Norouzi M, Hosseiny S M, Seyed-Yazdi J, and Irannezhad F, Observation of the performance enhancement of a non-degenerate JPA versus degenerate JPA in a QTMS radar simulation. Engineering Research Express, 2024;6(1): 015030.
  • Livreri P, Enrico E, Fasolo L, Greco A, Rettaroli A, Vitali D, Farina A, Marchetti C F, and Giacomin A Sq D. Microwave quantum radar using a Josephson traveling wave parametric amplifier. 2022 IEEE Radar Conference (RadarConf2022); 2022 Mar 21-25; New York City, NY, USA. p. 1-5.
  • Qiu J Y, Grimsmo A, Peng K et al. Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier. Nature Physics, 2023;19: 706 - 713.
  • Esposito M, Ranadive A, Planat L et al. Observation of two-mode squeezing in a traveling wave parametric amplifier. Physical Review Letter, 2022;128(15): 153603.
  • Livreri P, Enrico E, Vitali D, and Farina A. Microwave quantum radar using a Josephson traveling wave parametric amplifier and a phase-conjugate receiver for a long-distance detection. 2023 IEEE Radar Conference (RadarConf23); 2023 May 1-5; San Antonio, TX, USA. p. 1-5.
  • Wei R, Li J, Wang W, Ye Z, Zhao C, and Guo Q. Evaluating the detection range of microwave quantum illumination radar. IET Radar Sonar Navigation, 2023;17(11): 1664 - 1673.
  • Sisco B, and Chen K C. Quantum wireless imaging and remote sensing - state-of-the-art technologies and opportunities. 2023 26th International Symposium on Wireless Personal Multimedia Communications (WPMC); 2023 Nov 19-22; Tampa, FL, USA. p. 293 - 298.
  • Luong D, Balaji B, and Rajan S. Biomedical sensing using quantum radars based on Josephson parametric amplifiers. 2021 International Applied Computational Electromagnetics Society Symposium (ACES); 2021 Aug 1-5; Hamilton, ON, Canada. p. 1-4.
  • Pirandola S, Bardhan, B R, Gehring, T, Weedbrook C, and Lloyd S. Advances in photonic quantum sensing. Nature Photonics, 2018;12: 724 - 733.
  • Balaji B. Quantum radar: snake oil or good idea?. 2018 International Carnahan Conference on Security Technology (ICCST), 2018 Oct 22-25; Montreal, QC, Canada. p. 1-7.
  • Shapiro J H. The quantum illumination story. IEEE Aerospace and Electronic Systems Magazine, 2020;35(4): 8 - 20.
  • Slepyan G, Vlasenko S, Mogilevtsev D, and Boag A. Quantum radars and lidars: concepts, realizations, and perspectives. IEEE Antennas and Propagation Magazine, 2022;64(1): 16 - 26.
  • Torromé R G, and Barzanjeh. Advances in quantum radar and LIDAR. Progress in Quantum Electronics, 2023; 93: 100497.
  • Luong D, Balaji B, and Rajan S. Quantum radar: challenges and outlook: an overview of the state of the art. IEEE Microwave Magazine, 2023; 24(9): 61 - 67.
  • Karsa A, Fletcher A, Spedalieri G, and Pirandola S. Quantum illumination and quantum radar: a brief overview. Reports on Progress in Physics, 2024; 87(9): 094001.
  • Lin Y -C, Huang T -W, Tsai P -J, Chen Y -H, Zhong Y -L, and Chang C -R. Advancements in quantum radar technology an overview of experimental methods and quantum electrodynamics considerations. IEEE Nanotechnology Magazine, 2024;18(3): 4 - 14.
  • Walls D F, and G. J. Milburn, Quantum Optics, 2nd edition. Berlin:Springer-Verlag Berlin Heidelberg; 2008.
  • Caves C M, and Schumaker B L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Physical Review A, 1985;31(5): 3068 - 3092.
  • Schumaker B L, and Caves C M. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Physical Review A, 1985;31(5): 3093 - 3111.
  • Lecture Notes: From Nonlinear Optics to Entanglement and Squeezing. [Document on the Internet]; [cited 2024 October 18]. Available from: https://mpl.mpg.de/research-at-mpl/independependent-research-groups/chekhova-research-group/teaching.
  • Fox M. Quantum optics: an introduction. New York:Oxford University Press; 2006.
  • Ghambaryan I A, Guoa R, Hovsepyan R K, Poghosyan A R, Vardanyan E S, and Lazaryan V G. Periodically poled structures in lithium niobate crystals: growth and photoelectric properties. Journal of Optoelectronics and Advanced Materials, 2003; 5(1): 61 - 68.
  • Lithium Niobate, [cited 2024 December 05]. Available from: https://www.tydexoptics.com/pdf/Lithium_Niobate.pdf
  • Lithium Niobate, [cited 2024 December 05]. Available from: https://roditi.com/SingleCrystal/LiNbO3/Magnesium-Doped.html
  • Hum D S, and Fejer M M. Quasi-phasematching. Comptes Rendus - Physique, 2007; 8(2): 180 - 198.
  • Tambasco J-L, Boes A, Helt L G, Steel M J, and Mitchell A. Domain engineering algorithm for practical and effective photon sources, 2016; Optics Express, 24(17): 19616 - 19626.
  • Smith B J, Mahou P, Cohen O, Lundeen J S, and Walmsley I A. Photon pair generation in birefringent optical fibers, 2009; Optics Express 17(26): 23589 - 23602.
  • Orieux A, Versteegh M A M, Jöns K D, and Ducci S. Semiconductor devices for entangled photon pair generation: a review, 2017; Reports on Progress in Physics, 80(7): 076001.
  • Caves C M, and Schumaker B L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states, 1985; Physical Review A, 31(5): 3068 - 3092.
  • Schumaker B L, and Caves C M. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, 1985; Physical Review A, 31(5): 3093 - 3111.
  • Braunstein S L, and van Loock P. Quantum information with continuous variables, 2005; Review of Modern Physics, 77(2): 513 - 577.
  • Weedbrook C, Pirandola S, and García-Patrón R, Cerf N J, Ralph T C, and Shapiro J H, and Lloyd S. Gaussian quantum information, 2012; Review of Modern Physics, 84(2): 621 -669.
  • Abdo B, Kamal A, and Devoret M. Nondegenerate three-wave mixing with the Josephson ring modulator, 2013; Physical Review B, 87(1): 014508.
  • Ulku A C, Bruschini C, Antolović I M, Kuo Y, Ankri R, Weiss S, Michalet X, and Charbon E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE Journal of Selected Topics in Quantum Electronics, 2019; 25(1): 1 - 12.
  • Number of Papers on Quantum Radar. [cited 2024 October 25]. Available from: https://krccorp.net/papers.gif.
  • Number of Authors working on Quantum Radar. [cited 2024 October 25]. Available from: https://krccorp.net/authors.gif.
  • ASELSAN QUANTAL. [Document on the Internet]; [cited 2024 October 25]. Available from: https://www.aselsan.com/en/research-and-development/quantum-technologies.
There are 60 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Articles
Authors

Murat Can Karakoç 0000-0003-0425-5986

Abdurrahman Can Kıraç 0009-0004-5783-1961

Özgün Ersoy 0000-0002-0160-1161

Asaf Behzat Şahin 0000-0001-9759-8448

Publication Date December 30, 2024
Submission Date October 30, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Karakoç, M. C., Kıraç, A. C., Ersoy, Ö., Şahin, A. B. (2024). Quantum Radar: Theory, Limits, and Practical Applications. Usak University Journal of Engineering Sciences, 7(2), 148-165. https://doi.org/10.47137/uujes.1576274
AMA Karakoç MC, Kıraç AC, Ersoy Ö, Şahin AB. Quantum Radar: Theory, Limits, and Practical Applications. UUJES. December 2024;7(2):148-165. doi:10.47137/uujes.1576274
Chicago Karakoç, Murat Can, Abdurrahman Can Kıraç, Özgün Ersoy, and Asaf Behzat Şahin. “Quantum Radar: Theory, Limits, and Practical Applications”. Usak University Journal of Engineering Sciences 7, no. 2 (December 2024): 148-65. https://doi.org/10.47137/uujes.1576274.
EndNote Karakoç MC, Kıraç AC, Ersoy Ö, Şahin AB (December 1, 2024) Quantum Radar: Theory, Limits, and Practical Applications. Usak University Journal of Engineering Sciences 7 2 148–165.
IEEE M. C. Karakoç, A. C. Kıraç, Ö. Ersoy, and A. B. Şahin, “Quantum Radar: Theory, Limits, and Practical Applications”, UUJES, vol. 7, no. 2, pp. 148–165, 2024, doi: 10.47137/uujes.1576274.
ISNAD Karakoç, Murat Can et al. “Quantum Radar: Theory, Limits, and Practical Applications”. Usak University Journal of Engineering Sciences 7/2 (December 2024), 148-165. https://doi.org/10.47137/uujes.1576274.
JAMA Karakoç MC, Kıraç AC, Ersoy Ö, Şahin AB. Quantum Radar: Theory, Limits, and Practical Applications. UUJES. 2024;7:148–165.
MLA Karakoç, Murat Can et al. “Quantum Radar: Theory, Limits, and Practical Applications”. Usak University Journal of Engineering Sciences, vol. 7, no. 2, 2024, pp. 148-65, doi:10.47137/uujes.1576274.
Vancouver Karakoç MC, Kıraç AC, Ersoy Ö, Şahin AB. Quantum Radar: Theory, Limits, and Practical Applications. UUJES. 2024;7(2):148-65.

An international scientific e-journal published by the University of Usak