Araştırma Makalesi
BibTex RIS Kaynak Göster

MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES

Yıl 2022, , 1023 - 1042, 31.12.2022
https://doi.org/10.17482/uumfd.1066879

Öz

Inflated hollow cylinder is an important problem encountered in a variety of fields in engineering. In industry, tires and fire hoses are pressurized from inside. In biomechanics, veins, arteries and intervertebral discs can also be modeled using the inflated cylinder problem. The soft ground substance of biological tissues in question are incompressible and portray large non-linear deformations under loading. Classical theories of linear elasticity are incapable of modeling such behavior. Instead, continuum mechanics based large displacement formulation and hyperelasticity are necessary to understand the deformation and mechanics of soft materials. In this study, inflation of a cylinder composed of an isotropic neo-Hookean type of material is analyzed in plane strain and generalized plane strain conditions. First, an analytical solution is established using a continuum mechanical framework. Second, the finite element method is employed to model the same problem. The numerical approach is verified by using a mesh sensitivity analysis and validated by using analytical solution. Therefore, the proposed analytical benchmark can quantify the accuracy of any commercial finite element software solution of neo-Hookean tube inflation. As a side result, it was also revealed that the hydrostatic pressure in the tube is more than six times the inflation pressure.

Teşekkür

We would like to thank Mr. Cevat Volkan Karadağ (M.Sc., ME) for reading through the entire manuscript and providing valuable comments and corrections.

Kaynakça

  • 1. Arruda, E. M., & Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389–412. https://doi.org/10.1016/0022-5096(93)90013-6
  • 2. Behnke, R., Dal, H., & Kaliske, M. (2011). An extended tube model for thermo-viscoelasticity of rubberlike materials: Parameter identification and examples. PAMM, 11, 353–354. https://doi.org/10.1002/pamm.201110168
  • 3. Breslavsky, I. D., Amabili, M., Legrand, M., & Alijani, F. (2016). Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes. International Journal of Non-Linear Mechanics, 84, 39–45. https://doi.org/10.1016/j.ijnonlinmec.2016.04.011
  • 4. Cook, R. D., & Young, W. C. (1999). Pressurized cylinders and spinning disks. In Advanced Mechanics of Materials. Prentice Hall.
  • 5. Dogan, F., & Celebi, M. S. (2016). Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data. The International Journal of Medical Robotics and Computer Assisted Surgery, 12(3), 410–420. https://doi.org/https://doi.org/10.1002/rcs.1704
  • 6. Dogan, F., & Serdar Celebi, M. (2010). Real-time deformation simulation of non-linear viscoelastic soft tissues. Simulation, 87(3), 179–187. https://doi.org/10.1177/0037549710364532
  • 7. Erdem, A., Usal, M., & Usal, M. (2005). Keyfi fiber takviyeli viskoelastik piezoelektrik bir cismin elektro-termomekanik davranışı için matematiksel bir model. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20(3), 305–319.
  • 8. Fung, Y. C. (1981). Bio-viscoelastic solids. In Biomechanics: Mechanical Properties of Living Tissues (2nd ed., pp. 196–260). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-1752- 5_7
  • 9. Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, 3(6), 15–35. https://doi.org/10.1098/rsif.2005.0073
  • 10. Goodno, B. J., & Gere, J. M. (2016). Applications of plane stress: pressure vessels. In Mechanics of Materials (9th ed.). Cengage Learning.
  • 11. Gültekin, O., Dal, H., & Holzapfel, G. A. (2019). On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Computational Mechanics, 63(3), 443–453. https://doi.org/10.1007/s00466-018-1602-9
  • 12. Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582–592. https://doi.org/10.1063/1.1712836
  • 13. MSC Software. (2019). MARC/Mentat 2019.0.0. Irvine, CA, USA.
  • 14. Ogden, R. W., & Hill, R. (1972). Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565–584. https://doi.org/10.1098/rspa.1972.0026
  • 15. Petekkaya, A., & Tönük, E. (2013). Yumuşak biyolojik dokuların düzlemsel eşyönsüz mekanik davranışının bireye ve noktaya özel belirlenmesi için elipsoid uçlarla yerinde canli (in vivo) indentör deneyleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(1), 63–72.
  • 16. Rajagopal, K. R., & Saravanan, U. (2012). Extension, inflation and circumferential shearing of an annular cylinder for a class of compressible elastic bodies. Mathematics and Mechanics of Solids, 17(5), 473–499. https://doi.org/10.1177/1081286511423125
  • 17. Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. III. Some simple problems in cyclindrical polar co-ordinates. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(823), 509–525. https://doi.org/10.1098/rsta.1948.0004
  • 18. Rivlin, R. S., & Rideal, E. K. (1948). Large elastic deformations of isotropic materials IV. further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379–397. https://doi.org/10.1098/rsta.1948.0024
  • 19. Selvadurai, A. P. S., & Suvorov, A. P. (2017). On the inflation of poro-hyperelastic annuli. Journal of the Mechanics and Physics of Solids, 107, 229–252. https://doi.org/https://doi.org/10.1016/j.jmps.2017.06.007
  • 20. Treloar, L. R. G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc., 40(0), 59–70. https://doi.org/10.1039/TF9444000059
  • 21. Vogel, A., Rakotomanana, L., & Pioletti, D. P. (2017). Chapter 3 - viscohyperelastic strain energy function. In Y. Payan & J. Ohayon (Eds.), Biomechanics of Living Organs (Vol. 1, pp. 59–78). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804009-6.00003-1
  • 22. Wineman, A. (2005). Some results for generalized neo-Hookean elastic materials. International Journal of Non-Linear Mechanics, 40(2–3), 271–279. https://doi.org/10.1016/j.ijnonlinmec.2004.05.007
  • 23. Zhu, Y., Luo, X., Ogden, R., Zhu, Y., Luo, X., & Ogden, R. (2010). Nonlinear axisymmetric deformations of an elastic tube under external pressure. European Journal of Mechanics-A/Solids, 29(2), 216–229. https://doi.org/10.1016/j.euromechsol.2009.10.004ï

Biyolojik Dokulara Vurgu ile Şişirilmiş Hiperelastik bir Tüpün Mekaniği

Yıl 2022, , 1023 - 1042, 31.12.2022
https://doi.org/10.17482/uumfd.1066879

Öz

İçi boş bir silindirin şişirilmesi, mühendisliğin çeşitli alanlarında karşılaşılan önemli bir problemdir. Endüstride, araba lastikleri ve itfaiye hortumları içten basınçlandırılırlar. Biyomekanikte, damarlar ve intervertebral diskler de şişirilmiş silindir problemi kullanılarak modellenebilir. Bahsedilen biyolojik dokuların yumuşak yapısı sıkıştırılamazlar ve yük altında büyük, doğrusal olmayan deformasyon sergilerler. Klasik doğrusal elastik teoriler böyle bir davranışı modellemede yetersiz kalır. Bunun yerine, yumuşak malzemelerin deformasyonu ve mekaniğini anlamak için sürekli ortamlar mekaniği temelli yüksek yer değiştirme formülasyonları gereklidir. Bu çalışmada, izotropik neo-Hookean malzemeden meydana gelen hiperelastik bir tüp düzlemsel gerinim ve genelleştirilmiş düzlemsel gerinim koşulları altında analiz edilmiştir. İlk olarak, her iki koşul için sürekli ortamlar mekaniği çerçevesinde bir analitik çözüm inşa edilmiştir. Sonrasında, aynı problem için sonlu elemanlar yöntemi işleme konulmuştur. Nümerik modelin doğrulaması ağ hassasiyet analizi kullanılarak sağlanmıştır. Analitik çözüm ile doğrulanmıştır. Buradan, öne sürülen analitik çözüm ile herhangi bir ticari sonlu elemanlar yazılımı ile elde edilmiş şişirilen neo-Hookean bir tüpün davranış hassasiyeti belirlenebilecektir. Analitik çözümle gelen ilginç bir yan sonuç, tüpün içerisindeki hidrostatik basıncın şişirme basıncından altı kat fazla çıkması olmuştur.

Kaynakça

  • 1. Arruda, E. M., & Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389–412. https://doi.org/10.1016/0022-5096(93)90013-6
  • 2. Behnke, R., Dal, H., & Kaliske, M. (2011). An extended tube model for thermo-viscoelasticity of rubberlike materials: Parameter identification and examples. PAMM, 11, 353–354. https://doi.org/10.1002/pamm.201110168
  • 3. Breslavsky, I. D., Amabili, M., Legrand, M., & Alijani, F. (2016). Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes. International Journal of Non-Linear Mechanics, 84, 39–45. https://doi.org/10.1016/j.ijnonlinmec.2016.04.011
  • 4. Cook, R. D., & Young, W. C. (1999). Pressurized cylinders and spinning disks. In Advanced Mechanics of Materials. Prentice Hall.
  • 5. Dogan, F., & Celebi, M. S. (2016). Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data. The International Journal of Medical Robotics and Computer Assisted Surgery, 12(3), 410–420. https://doi.org/https://doi.org/10.1002/rcs.1704
  • 6. Dogan, F., & Serdar Celebi, M. (2010). Real-time deformation simulation of non-linear viscoelastic soft tissues. Simulation, 87(3), 179–187. https://doi.org/10.1177/0037549710364532
  • 7. Erdem, A., Usal, M., & Usal, M. (2005). Keyfi fiber takviyeli viskoelastik piezoelektrik bir cismin elektro-termomekanik davranışı için matematiksel bir model. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 20(3), 305–319.
  • 8. Fung, Y. C. (1981). Bio-viscoelastic solids. In Biomechanics: Mechanical Properties of Living Tissues (2nd ed., pp. 196–260). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-1752- 5_7
  • 9. Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society, Interface, 3(6), 15–35. https://doi.org/10.1098/rsif.2005.0073
  • 10. Goodno, B. J., & Gere, J. M. (2016). Applications of plane stress: pressure vessels. In Mechanics of Materials (9th ed.). Cengage Learning.
  • 11. Gültekin, O., Dal, H., & Holzapfel, G. A. (2019). On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Computational Mechanics, 63(3), 443–453. https://doi.org/10.1007/s00466-018-1602-9
  • 12. Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582–592. https://doi.org/10.1063/1.1712836
  • 13. MSC Software. (2019). MARC/Mentat 2019.0.0. Irvine, CA, USA.
  • 14. Ogden, R. W., & Hill, R. (1972). Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565–584. https://doi.org/10.1098/rspa.1972.0026
  • 15. Petekkaya, A., & Tönük, E. (2013). Yumuşak biyolojik dokuların düzlemsel eşyönsüz mekanik davranışının bireye ve noktaya özel belirlenmesi için elipsoid uçlarla yerinde canli (in vivo) indentör deneyleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(1), 63–72.
  • 16. Rajagopal, K. R., & Saravanan, U. (2012). Extension, inflation and circumferential shearing of an annular cylinder for a class of compressible elastic bodies. Mathematics and Mechanics of Solids, 17(5), 473–499. https://doi.org/10.1177/1081286511423125
  • 17. Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. III. Some simple problems in cyclindrical polar co-ordinates. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(823), 509–525. https://doi.org/10.1098/rsta.1948.0004
  • 18. Rivlin, R. S., & Rideal, E. K. (1948). Large elastic deformations of isotropic materials IV. further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379–397. https://doi.org/10.1098/rsta.1948.0024
  • 19. Selvadurai, A. P. S., & Suvorov, A. P. (2017). On the inflation of poro-hyperelastic annuli. Journal of the Mechanics and Physics of Solids, 107, 229–252. https://doi.org/https://doi.org/10.1016/j.jmps.2017.06.007
  • 20. Treloar, L. R. G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc., 40(0), 59–70. https://doi.org/10.1039/TF9444000059
  • 21. Vogel, A., Rakotomanana, L., & Pioletti, D. P. (2017). Chapter 3 - viscohyperelastic strain energy function. In Y. Payan & J. Ohayon (Eds.), Biomechanics of Living Organs (Vol. 1, pp. 59–78). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804009-6.00003-1
  • 22. Wineman, A. (2005). Some results for generalized neo-Hookean elastic materials. International Journal of Non-Linear Mechanics, 40(2–3), 271–279. https://doi.org/10.1016/j.ijnonlinmec.2004.05.007
  • 23. Zhu, Y., Luo, X., Ogden, R., Zhu, Y., Luo, X., & Ogden, R. (2010). Nonlinear axisymmetric deformations of an elastic tube under external pressure. European Journal of Mechanics-A/Solids, 29(2), 216–229. https://doi.org/10.1016/j.euromechsol.2009.10.004ï
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Faruk Büyükkaya 0000-0003-2105-5791

Ali Fethi Okyar 0000-0002-2561-7547

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 2 Şubat 2022
Kabul Tarihi 10 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Büyükkaya, Ö. F., & Okyar, A. F. (2022). MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1023-1042. https://doi.org/10.17482/uumfd.1066879
AMA Büyükkaya ÖF, Okyar AF. MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES. UUJFE. Aralık 2022;27(3):1023-1042. doi:10.17482/uumfd.1066879
Chicago Büyükkaya, Ömer Faruk, ve Ali Fethi Okyar. “MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1023-42. https://doi.org/10.17482/uumfd.1066879.
EndNote Büyükkaya ÖF, Okyar AF (01 Aralık 2022) MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1023–1042.
IEEE Ö. F. Büyükkaya ve A. F. Okyar, “MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES”, UUJFE, c. 27, sy. 3, ss. 1023–1042, 2022, doi: 10.17482/uumfd.1066879.
ISNAD Büyükkaya, Ömer Faruk - Okyar, Ali Fethi. “MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1023-1042. https://doi.org/10.17482/uumfd.1066879.
JAMA Büyükkaya ÖF, Okyar AF. MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES. UUJFE. 2022;27:1023–1042.
MLA Büyükkaya, Ömer Faruk ve Ali Fethi Okyar. “MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1023-42, doi:10.17482/uumfd.1066879.
Vancouver Büyükkaya ÖF, Okyar AF. MECHANICS OF A HYPERELASTIC INFLATED TUBE WITH EMPHASIS ON BIOLOGICAL SOFT TISSUES. UUJFE. 2022;27(3):1023-42.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr