Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Optimum Heat-Transfer Performance Using Polymer Composite Materials on Solar Panels

Yıl 2022, , 1177 - 1192, 31.12.2022
https://doi.org/10.17482/uumfd.1107891

Öz

Photovoltaic (PV) modules are structures that produce electricity from the sun's rays falling on them and have more than one PV cell on their surface. PV cells can use not only direct rays, but also a certain wavelength range of all light coming to the surface for energy production. Due to their nature, PV modules have a higher temperature compared to the ambient temperature, which causes a decrease in the electrical efficiency and power generation of the PV cells. For this reason, academic studies on the transfer of heat energy stored in PV modules to outside have gained momentum in recent years. For example, by obtaining heat energy from PV modules, the heating load of the houses is met under the target of zero energy consumption, and the system/energy efficiency is increased with further work. This study aimed to reduce the heat energy stored in the PV module by examining the composite structures formed using polymer-based reinforcement materials to improve the heat conduction performance of PV modules. For this purpose, reinforcement materials were investigated, and it was found appropriate to investigate carbon, glass fiber, aramid (Kevlar) reinforcement materials under two different parameters. These two parameters investigate the heat conduction performance of each reinforcement material in different layer thicknesses and in the hybrid structure formed with each other. As a result of the research, it has been obtained that the structure formed with carbon fiber reinforcement material is the optimum structure with a heat flux of 6.51 W/mm2. In heat conduction performance, carbon fiber was followed by glass fiber (0.013 W/mm2) and aramid (4.10-4 W/mm2). This research contributed to the increase of the heat energy that can be obtained from PV modules by obtaining the heat flux difference between the PV module and the conventional type of PV module laminated with polymer composite materials as 0.0242 W/mm2.

Kaynakça

  • 1. Asmatulu E., Alonayni A., Alamir M. (2018) Safety concerns in composite manufacturing and machining, Behavior and Mechanics of Multifunctional Materials and Composites XII, 10596, 421 – 428. doi: 10.1117/12.2296707
  • 2. Balasubramanian M (2014) Composite materials and processing, Boca Raton: CRC press, 335 – 343.
  • 3. Barucci M., Olivieri E., Pasca E., Risegari L, Ventura G. (2005) Thermal conductivity of Torlon between 4.2 and 300 K, Cryogenics, 45(4), 295 – 299. doi: 10.1016/j.cryogenics.2004.11.006
  • 4. Bhatt P., Goe A. (2017) Carbon Fibres: Production, Properties and Potential Use, Material Science Research India, 14(1), 52 – 57. doi: 10.13005/msri/140109
  • 5. Chou H. M., Wang J. C., Chang Y. P. (2013) An experimental study on heat conduction and thermal contact resistance for the AlN flake, Advances in Materials Science and Engineering. doi: 10.1155/2013/352173
  • 6. Cuddihy E., Carroll W., Coulbert C., Gupta A., Liang R. (1982) Photovoltaic-module encapsulation design and materials selection, Jet Propulsion Lab., Pasadena, CA (USA). doi: 10.2172/5356871
  • 7. Çengel Y. A., Tanyıldızı V., Dağtekin İ. (2011) Isı ve kütle transferi, Güven Kitabevi, ISBN: 978975624041
  • 8. Fried E. (1969) Thermal conduction contribution to heat transfer at contacts, Thermal conductivity, 2, 253 – 274.
  • 9. Fukai J., Kanou M., Kodama Y., Miyatake O. (2000) Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Conversion and Management, 41(14), 1543 – 1556. doi: 10.1016/S0196-8904(99)00166-1
  • 10. Goren A., Atas C. (2008) Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding, Archives of materials Science and Engineering, 34(2), 117 – 120. doi: 10.1.1.553.9882
  • 11. Gorter T., Reinders A. H. (2012) A comparison of 15 polymers for application in photovoltaic modules in PV-powered boats, Applied energy, 92, 286 – 297. doi: 10.1016/j.apenergy.2011.10.042
  • 12. Kara A. K., Aksoy D., Yıldırım H., Türkay E. K., Goren A (2019) Mono Silikon Fotovoltaik Hücrelerin Polimer Kompozit Malzeme ile Laminasyonu, PuTech Composites, Temmuz – Ağustos 2019, 1 – 8.
  • 13. Korkut T. B., Goren A., Rachid A. (2022) Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions, Energies, 15(18), 6538. doi: 10.3390/en15186538
  • 14. Lee B., Liu J. Z., Sun B., Shen C. Y., Dai G. (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell, Express Polymer Letters, 2, 357 – 363. doi: 10.3144/EXPRESSPOLYMLETT.2008.42
  • 15. Matthews F. L., Rawlings R. D. (1999) Composite materials: engineering and science, Woodhead Publishing.
  • 16. Matweb (2022) Kevlar Takviye Malzemesinin Termofiziksel Özellikleri, Erişim Adresi: http://www.matweb.com/search/DataSheet.aspx?MatGUID=7323d8a43cce4fe795d772b67207eac8 (Erişim Tarihi: 07.02.2022)
  • 17. Matweb (2022) Cam Elyafların Termofiziksel Özellikleri, Erişim Adresi: http://www.matweb.com/search/DataSheet.aspx?MatGUID=d9c18047c49147a2a7c0b0bb1743e812&ckck=1 (Erişim Tarihi: 07.02.2022)
  • 18. Mera H., Takata T. (2000) High‐performance fibers, Ullmann's Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a13_001
  • 19. Ozisik M. N. (1985) Heat transfer: a basic approach, New York: McGraw-Hill, doi: 10.1017/S0001924000014780
  • 20. Park D. W., Shim S. E. (2010) A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers, Carbon letters, 11(4), 347 – 356. doi: 10.5714/CL.2010.11.4.347
  • 21. Pern J. (2008) Module encapsulation materials, processing and testing (presentation) (No. NREL/PR-520-44666). National Renewable Energy Lab. (NREL), Golden, CO (United States).
  • 22. Rosato D. V. (1997) Designing with reinforced composites: technology, performance, economics, SPE Books.
  • 23. Srivatsan T. S. (1995) A review of:“Fundamentals of Composites Manufacturing: Materials, Methods and Applications” by A. Brent Strong, Material and Manufacturing Process, 10(5), 1121 – 1122. doi: 10.1080/10426919508935097
  • 24. Tavman I. H., Akinci H. (2000) Transverse thermal conductivity of fiber reinforced polymer composites, International Communications in Heat and Mass Transfer, 27(2), 253 – 261. doi: 10.1016/S0735- 1933(00)00106-8
  • 25. Toray (2022) Karbon Elyafların Termofiziksel Özellikleri, Erişim Adresi: https://www.toraycma.com/products/carbon-fiber/ (Erişim Tarihi: 06.02.2022)
  • 26. Ventura G. Martelli V. (2009) Thermal conductivity of Kevlar 49 between 7 and 290 K, Cryogenics, 49(12), 735 – 737. doi: 10.1016/j.cryogenics.2009.08.001
  • 27. Zhu C. Y., Gu Z. K., Xu H. B., Ding B., Gong L., Li Z. Y. (2021) The effective thermal conductivity of coated/uncoated fiber-reinforced composites with different fiber arrangements, Energy, 230, 120756. doi: 10.1016/j.energy.2021.120756
  • 28. Zimmerli B., Strub M., Jeger F., Stadler O., Lussi A. (2010) Composite materials: composition, properties and clinical applications. A literature review, Schweizer Monatsschrift fur Zahnmedizin, 120(11), 972 – 986.
  • 29. Zweben C. H. (2005) Composites Overview. Encyclopedia of Condensed Matter Physics, Elsevier, Pages 192-208, ISBN: 9780123694010

GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ

Yıl 2022, , 1177 - 1192, 31.12.2022
https://doi.org/10.17482/uumfd.1107891

Öz

Fotovoltaik (FV) modüller, üzerine düşen güneş ışınlarından elektrik üretimini sağlayan ve yüzeyinde birden çok FV hücre bulunan yapılardır. FV hücreler, sadece direkt gelen ışınları değil, yüzeye gelen tüm ışığın belirli dalgaboyu aralığını enerji üretimi için kullanabilirler. FV modüller, yapıları gereği sıcaklıkları, ortam sıcaklığına kıyasla daha fazla olmakta ve bu durum FV hücrelerin elektriksel verim ve güç üretim düşümüne neden olmaktadır. Bu sebeple, FV modüllerde depolanan ısı enerjisinin dışarıya transferi konusunda akademik çalışmalar son yıllarda ivme kazanmıştır. Örneğin, FV modüllerden ısı enerjisi elde edilerek sıfır enerji tüketim hedefi altında konutların ısıtma yükü karşılanmakta ve ilerleyen çalışmalar ile birlikte sistem/enerji verimi arttırılmaktadır. Bu çalışma, FV modüllerin ısı iletim performansının geliştirilmesine yönelik polimer esaslı takviye malzemelerin kullanımı ile oluşturulan kompozit yapılar incelenerek, FV modülde depolanan ısı enerjisinin azaltılmasını hedef almıştır. Bu amaçla, takviye malzemeler araştırılmış ve karbon, cam elyaf, aramid (kevlar) takviye malzemelerinin iki farklı parametre altında araştırılması uygun görülmüştür. Bu iki parametre, herbir takviye malzemenin farklı tabaka kalınlıklarındaki ve birbirleri ile oluşturduğu hibrit yapıdaki sahip oldukları ısı iletim performansını araştırmaktadır. Araştırma sonucunda karbon elyaf takviye malzemesi ile oluşturulan yapının 6,51 W/mm2 ısı akısı ile birlikte optimum yapı olduğu elde edilmiştir. Isı iletim performansında karbon elyafı cam elyaf (0,013 W/mm2) ve aramid (4.10-4 W/mm2) takip etmiştir. Bu araştırma polimer kompozit malzemeler ile lamine edilmiş FV modül ve konvansiyonel tip FV modül arasındaki ısı akısı farkını 0,0242 W/mm2 olarak elde ederek FV modüllerden elde edilebilen ısı enerjisinin arttırımına katkıda bulunmuştur.

Kaynakça

  • 1. Asmatulu E., Alonayni A., Alamir M. (2018) Safety concerns in composite manufacturing and machining, Behavior and Mechanics of Multifunctional Materials and Composites XII, 10596, 421 – 428. doi: 10.1117/12.2296707
  • 2. Balasubramanian M (2014) Composite materials and processing, Boca Raton: CRC press, 335 – 343.
  • 3. Barucci M., Olivieri E., Pasca E., Risegari L, Ventura G. (2005) Thermal conductivity of Torlon between 4.2 and 300 K, Cryogenics, 45(4), 295 – 299. doi: 10.1016/j.cryogenics.2004.11.006
  • 4. Bhatt P., Goe A. (2017) Carbon Fibres: Production, Properties and Potential Use, Material Science Research India, 14(1), 52 – 57. doi: 10.13005/msri/140109
  • 5. Chou H. M., Wang J. C., Chang Y. P. (2013) An experimental study on heat conduction and thermal contact resistance for the AlN flake, Advances in Materials Science and Engineering. doi: 10.1155/2013/352173
  • 6. Cuddihy E., Carroll W., Coulbert C., Gupta A., Liang R. (1982) Photovoltaic-module encapsulation design and materials selection, Jet Propulsion Lab., Pasadena, CA (USA). doi: 10.2172/5356871
  • 7. Çengel Y. A., Tanyıldızı V., Dağtekin İ. (2011) Isı ve kütle transferi, Güven Kitabevi, ISBN: 978975624041
  • 8. Fried E. (1969) Thermal conduction contribution to heat transfer at contacts, Thermal conductivity, 2, 253 – 274.
  • 9. Fukai J., Kanou M., Kodama Y., Miyatake O. (2000) Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Conversion and Management, 41(14), 1543 – 1556. doi: 10.1016/S0196-8904(99)00166-1
  • 10. Goren A., Atas C. (2008) Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding, Archives of materials Science and Engineering, 34(2), 117 – 120. doi: 10.1.1.553.9882
  • 11. Gorter T., Reinders A. H. (2012) A comparison of 15 polymers for application in photovoltaic modules in PV-powered boats, Applied energy, 92, 286 – 297. doi: 10.1016/j.apenergy.2011.10.042
  • 12. Kara A. K., Aksoy D., Yıldırım H., Türkay E. K., Goren A (2019) Mono Silikon Fotovoltaik Hücrelerin Polimer Kompozit Malzeme ile Laminasyonu, PuTech Composites, Temmuz – Ağustos 2019, 1 – 8.
  • 13. Korkut T. B., Goren A., Rachid A. (2022) Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions, Energies, 15(18), 6538. doi: 10.3390/en15186538
  • 14. Lee B., Liu J. Z., Sun B., Shen C. Y., Dai G. (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell, Express Polymer Letters, 2, 357 – 363. doi: 10.3144/EXPRESSPOLYMLETT.2008.42
  • 15. Matthews F. L., Rawlings R. D. (1999) Composite materials: engineering and science, Woodhead Publishing.
  • 16. Matweb (2022) Kevlar Takviye Malzemesinin Termofiziksel Özellikleri, Erişim Adresi: http://www.matweb.com/search/DataSheet.aspx?MatGUID=7323d8a43cce4fe795d772b67207eac8 (Erişim Tarihi: 07.02.2022)
  • 17. Matweb (2022) Cam Elyafların Termofiziksel Özellikleri, Erişim Adresi: http://www.matweb.com/search/DataSheet.aspx?MatGUID=d9c18047c49147a2a7c0b0bb1743e812&ckck=1 (Erişim Tarihi: 07.02.2022)
  • 18. Mera H., Takata T. (2000) High‐performance fibers, Ullmann's Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a13_001
  • 19. Ozisik M. N. (1985) Heat transfer: a basic approach, New York: McGraw-Hill, doi: 10.1017/S0001924000014780
  • 20. Park D. W., Shim S. E. (2010) A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers, Carbon letters, 11(4), 347 – 356. doi: 10.5714/CL.2010.11.4.347
  • 21. Pern J. (2008) Module encapsulation materials, processing and testing (presentation) (No. NREL/PR-520-44666). National Renewable Energy Lab. (NREL), Golden, CO (United States).
  • 22. Rosato D. V. (1997) Designing with reinforced composites: technology, performance, economics, SPE Books.
  • 23. Srivatsan T. S. (1995) A review of:“Fundamentals of Composites Manufacturing: Materials, Methods and Applications” by A. Brent Strong, Material and Manufacturing Process, 10(5), 1121 – 1122. doi: 10.1080/10426919508935097
  • 24. Tavman I. H., Akinci H. (2000) Transverse thermal conductivity of fiber reinforced polymer composites, International Communications in Heat and Mass Transfer, 27(2), 253 – 261. doi: 10.1016/S0735- 1933(00)00106-8
  • 25. Toray (2022) Karbon Elyafların Termofiziksel Özellikleri, Erişim Adresi: https://www.toraycma.com/products/carbon-fiber/ (Erişim Tarihi: 06.02.2022)
  • 26. Ventura G. Martelli V. (2009) Thermal conductivity of Kevlar 49 between 7 and 290 K, Cryogenics, 49(12), 735 – 737. doi: 10.1016/j.cryogenics.2009.08.001
  • 27. Zhu C. Y., Gu Z. K., Xu H. B., Ding B., Gong L., Li Z. Y. (2021) The effective thermal conductivity of coated/uncoated fiber-reinforced composites with different fiber arrangements, Energy, 230, 120756. doi: 10.1016/j.energy.2021.120756
  • 28. Zimmerli B., Strub M., Jeger F., Stadler O., Lussi A. (2010) Composite materials: composition, properties and clinical applications. A literature review, Schweizer Monatsschrift fur Zahnmedizin, 120(11), 972 – 986.
  • 29. Zweben C. H. (2005) Composites Overview. Encyclopedia of Condensed Matter Physics, Elsevier, Pages 192-208, ISBN: 9780123694010
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Sistemleri Mühendisliği (Diğer), Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Talha Batuhan Korkut 0000-0002-1166-6700

Aytac Goren 0000-0002-7954-1816

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 23 Nisan 2022
Kabul Tarihi 5 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Korkut, T. B., & Goren, A. (2022). GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1177-1192. https://doi.org/10.17482/uumfd.1107891
AMA Korkut TB, Goren A. GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ. UUJFE. Aralık 2022;27(3):1177-1192. doi:10.17482/uumfd.1107891
Chicago Korkut, Talha Batuhan, ve Aytac Goren. “GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1177-92. https://doi.org/10.17482/uumfd.1107891.
EndNote Korkut TB, Goren A (01 Aralık 2022) GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1177–1192.
IEEE T. B. Korkut ve A. Goren, “GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ”, UUJFE, c. 27, sy. 3, ss. 1177–1192, 2022, doi: 10.17482/uumfd.1107891.
ISNAD Korkut, Talha Batuhan - Goren, Aytac. “GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1177-1192. https://doi.org/10.17482/uumfd.1107891.
JAMA Korkut TB, Goren A. GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ. UUJFE. 2022;27:1177–1192.
MLA Korkut, Talha Batuhan ve Aytac Goren. “GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1177-92, doi:10.17482/uumfd.1107891.
Vancouver Korkut TB, Goren A. GÜNEŞ PANELLERİNDE POLİMER KOMPOZİT MALZEME KULLANIMI İLE OPTİMUM ISI TRANSFERİ PERFORMANSININ ELDE EDİLMESİ. UUJFE. 2022;27(3):1177-92.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr