Araştırma Makalesi
BibTex RIS Kaynak Göster

DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS

Yıl 2022, , 1061 - 1080, 31.12.2022
https://doi.org/10.17482/uumfd.1137071

Öz

In microrobotics field, self-reconfigurable modular robots (SRMRs) offer several advantages including adaptation to uneven environments, the capability of handling various sets of tasks, and continuous operation in the case of a malfunction of a single module. The current research direction in self-reconfigurable robotic systems is towards reaching million level number of modules working in coherence by means of locomotion, self-reconfiguration, and information flow. This research direction comes with new challenges such as miniaturizing the modules. One should consider looking for alternative ways of locomotion and self-reconfiguration when dealing with SRMRs having million level number of modules. Externally actuating the modules can be a good alternative to micro SRMRs. In this study, we developed a novel motion mechanism for a single module in a micro SRMR system by using external magnetic actuators. An assembly of elastic microtubes and permanent magnets is attached inside a cube-shaped module and periodic motion of the assembly is applied. The motion of a single microtube with permanent magnets inside is generated by using COMSOL Multiphysics software. The results of the simulations are compared with theoretical values to validate the motion mechanism that is introduced in the study.

Kaynakça

  • 1. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167. doi:10.1007/978-3-642-14743-2_14
  • 2. Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J. and Hurmuzlu Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965. doi:10.1109/LRA.2020.2974389
  • 3. Ceylan, H., Giltinan, J., Kozielski, K. and Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724. doi:10.1039/C7LC00064B
  • 4. Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P. and Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • 5. Diller, E., Pawashe, C., Floyd, S. and Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680. doi:10.1177/0278364911416140
  • 6. Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K. and Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.doi:10.1109/JSEN.2007.912552
  • 7. Fukuda, T. and Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72. doi:10.1007/BF00437320
  • 8. Goeller, M., Oberlaender, J., Uhl, K., Roennau, A. and Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018- 2023. doi:10.1109/ROBIO.2012.6491265
  • 9. Hirai, M., Hirose, S. and Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111. doi:10.1080/01691864.2013.812174
  • 10. Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J. and Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15. doi:10.1186/s40486-018-0077-y
  • 11. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T. and Chen, X. (2020). Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. doi:10.1016/j.mtbio.2020.100085
  • 12. Lin, D., Jiao, N., Wang, Z. and Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492. doi:10.1109/LRA.2021.3061376
  • 13. Lyder, A., Garcia, R.F.M. and Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889. doi:10.1109/IROS.2008.4650888
  • 14. Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P. and Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001. doi:10.1088/0960-1317/19/8/083001
  • 15. Nguyen B.H., Son P.T., Kim, J.S. and Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778. doi:10.1016/j.jmmm.2019.165778
  • 16. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V. and Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968. doi:10.1109/TASE.2015.2416678
  • 17. Pawashe, C., Floyd, S. and Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094. doi:10.1177/0278364909341413
  • 18. Pieters, R., Lombriser, S., Alvarez-Aguirre, A. and Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460. doi:10.1109/LRA.2016.2521407
  • 19. Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J. and Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084. doi:10.1126/sciadv.aax3084
  • 20. Sawetzki, T., Rahmouni, S., Bechingera, C. and Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5. doi:10.1073/pnas.0808808105
  • 21. Yang, Z. and Zhang, L. (2020). Magnetic actuation systems for miniature robots: A review. Advanced Intelligent Systems, 2, 2000082. doi:10.1002/aisy.202000082
  • 22. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics], IEEE Robotics and Automation Magazine, 14(1), 43-52. doi:10.1109/MRA.2007.339623
  • 23. Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L. and Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chemical Reviews, 121(8), 4999-5041. doi:10.1021/acs.chemrev.0c01234

Kendi Kendini Konfigüre Edebilen Bir Sistemdeki Tekil Modül İçin Dış Manyetik Eyleyiciler Kullanılarak Hareket Mekanizmasının Geliştirilmesi

Yıl 2022, , 1061 - 1080, 31.12.2022
https://doi.org/10.17482/uumfd.1137071

Öz

Mikro robotik alanında, kendi kendini konfigüre edebilen modüler robotlar (KKMR) düzensiz çevreye uyum sağlayabilme, birçok değişken görevi yerine getirebilme ve tekil modüllerin arızalanması durumunda operasyonu sürdürebilme gibi avantajlar sunmaktadır. Kendi kendini konfigüre edebilen robotik sistemlerdeki son güncel araştırmalar, milyon seviyesinde modül sayısına sahip sistemlerin hareket, kendi kendini konfigüre etme ve bilgi akışı gözetilerek geliştirilmesi yönündedir. Bu araştırma yönelimi beraberinde modüllerin minyatürleştirilmesi gibi sınamalar getirmektedir. Milyon mertebesinde modüle sahip bir KKMR sistemi göz önünde bulundurulduğunda, hareket ve kendi kendini konfigüre etme mekanizmaları için alternatif metotların araştırılması gerekmektedir. Modüllerin dış eyleyiciler ile harekete geçirilmesi mikro KKMR sistemleri için iyi bir seçenek oluşturmaktadır. Bu çalışmada mikro KKMR sistemindeki tekil bir modül için dış manyetik eyleyiciler kullanılarak özgün bir hareket mekanizması geliştirilmiştir. Esnek mikro tüp ve kalıcı mıknatıslardan oluşan bir yapı modülün içerisine yerleştirilmiş ve yapıya periyodik bir hareket uygulanmıştır. Tekil bir mikro tüp kalıcı mıknatıs yapısının hareketi COMSOL Multiphysics yazılımı kullanılarak canlandırılmıştır. Simülasyon sonuçları teorik değerler ile karşılaştırılarak önerilen hareket mekanizmasının doğrulaması gerçekleştirilmiştir.

Kaynakça

  • 1. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167. doi:10.1007/978-3-642-14743-2_14
  • 2. Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J. and Hurmuzlu Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965. doi:10.1109/LRA.2020.2974389
  • 3. Ceylan, H., Giltinan, J., Kozielski, K. and Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724. doi:10.1039/C7LC00064B
  • 4. Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P. and Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • 5. Diller, E., Pawashe, C., Floyd, S. and Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680. doi:10.1177/0278364911416140
  • 6. Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K. and Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.doi:10.1109/JSEN.2007.912552
  • 7. Fukuda, T. and Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72. doi:10.1007/BF00437320
  • 8. Goeller, M., Oberlaender, J., Uhl, K., Roennau, A. and Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018- 2023. doi:10.1109/ROBIO.2012.6491265
  • 9. Hirai, M., Hirose, S. and Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111. doi:10.1080/01691864.2013.812174
  • 10. Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J. and Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15. doi:10.1186/s40486-018-0077-y
  • 11. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T. and Chen, X. (2020). Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. doi:10.1016/j.mtbio.2020.100085
  • 12. Lin, D., Jiao, N., Wang, Z. and Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492. doi:10.1109/LRA.2021.3061376
  • 13. Lyder, A., Garcia, R.F.M. and Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889. doi:10.1109/IROS.2008.4650888
  • 14. Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P. and Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001. doi:10.1088/0960-1317/19/8/083001
  • 15. Nguyen B.H., Son P.T., Kim, J.S. and Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778. doi:10.1016/j.jmmm.2019.165778
  • 16. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V. and Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968. doi:10.1109/TASE.2015.2416678
  • 17. Pawashe, C., Floyd, S. and Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094. doi:10.1177/0278364909341413
  • 18. Pieters, R., Lombriser, S., Alvarez-Aguirre, A. and Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460. doi:10.1109/LRA.2016.2521407
  • 19. Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J. and Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084. doi:10.1126/sciadv.aax3084
  • 20. Sawetzki, T., Rahmouni, S., Bechingera, C. and Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5. doi:10.1073/pnas.0808808105
  • 21. Yang, Z. and Zhang, L. (2020). Magnetic actuation systems for miniature robots: A review. Advanced Intelligent Systems, 2, 2000082. doi:10.1002/aisy.202000082
  • 22. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics], IEEE Robotics and Automation Magazine, 14(1), 43-52. doi:10.1109/MRA.2007.339623
  • 23. Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L. and Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chemical Reviews, 121(8), 4999-5041. doi:10.1021/acs.chemrev.0c01234
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kontrol Mühendisliği, Mekatronik ve Robotik, Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Halil İbrahim Dokuyucu 0000-0001-6991-1708

Nurhan Gürsel Özmen 0000-0002-7016-5201

Ömer Cora 0000-0003-3564-5493

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 28 Haziran 2022
Kabul Tarihi 10 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Dokuyucu, H. İ., Gürsel Özmen, N., & Cora, Ö. (2022). DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1061-1080. https://doi.org/10.17482/uumfd.1137071
AMA Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. Aralık 2022;27(3):1061-1080. doi:10.17482/uumfd.1137071
Chicago Dokuyucu, Halil İbrahim, Nurhan Gürsel Özmen, ve Ömer Cora. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 3 (Aralık 2022): 1061-80. https://doi.org/10.17482/uumfd.1137071.
EndNote Dokuyucu Hİ, Gürsel Özmen N, Cora Ö (01 Aralık 2022) DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1061–1080.
IEEE H. İ. Dokuyucu, N. Gürsel Özmen, ve Ö. Cora, “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”, UUJFE, c. 27, sy. 3, ss. 1061–1080, 2022, doi: 10.17482/uumfd.1137071.
ISNAD Dokuyucu, Halil İbrahim vd. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (Aralık 2022), 1061-1080. https://doi.org/10.17482/uumfd.1137071.
JAMA Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. 2022;27:1061–1080.
MLA Dokuyucu, Halil İbrahim vd. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 3, 2022, ss. 1061-80, doi:10.17482/uumfd.1137071.
Vancouver Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. 2022;27(3):1061-80.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr