Haberleşme teknolojilerinde her geçen gün artan sinyal çeşitliliği, bu sinyallerin tanımlanması ve sınıflandırılması gerekliliğini ortaya çıkarmıştır. Beşinci nesil (fifth generation, 5G) ve ötesi kablosuz haberleşme teknolojileri, birçok uygulama için vazgeçilmez iletişim araçları haline gelmiştir. Otomatik modülasyon tanıma (automatic modulation recognition, AMR) tekniği, özellikle yeni nesil nesnelerin interneti, akıllı şehirler, otonom araçlar ve bilişsel radyo gibi birçok uygulama için temel bileşen haline gelmiştir. Bu çalışmada sekiz farklı modülasyon türü kullanılarak bir veri seti oluşturulmuş ve derin öğrenme (deep learning, DL) algoritmalarından olan evrişimli sinir ağları (convolutional neural network, CNN) kullanılarak farklı sinyal-gürültü oranlarında (signal-to-noise ratio, SNR) modülasyon türü sınıflandırılması yapılmıştır. Sonuç olarak SNR değerleri 10 dB, 20 dB ve 30 dB iken CNN ile sınıflandırma işleminde sırasıyla %80,76, %99,89 ve %100 doğruluk sağlanmıştır.
Otomatik Modülasyon Tanıma Evrişimli Sinir Ağları Derin Öğrenme 5G ve Ötesi Haberleşme Teknolojileri
The increasing signal diversity of communication technologies has revealed the need that these signals to be defined and classified. Fifth-generation (5G) and beyond wireless communication technologies have become indispensable communication tools for many applications. The automatic modulation recognition (AMR) technique has become a key component for many applications, especially the next-generation internet of things, smart cities, autonomous vehicles, and cognitive radio. In this study, a data set was created using eight different modulation types and modulation classification was made at different signal-to-noise ratios (SNR) using convolutional neural networks (CNN) from deep learning (DL) algorithms. As a result, while the SNR values were 10 dB, 20 dB, and 30 dB, CNN provided 80.76%, 99.89%, and 100% accuracy in the classification process, respectively.
Automatic Modulation Recognition Convolutional Neural Networks Deep Learning 5G and Beyond Communication Technologies
Birincil Dil | Türkçe |
---|---|
Konular | Elektrik Mühendisliği |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2023 |
Gönderilme Tarihi | 12 Ağustos 2022 |
Kabul Tarihi | 2 Ocak 2023 |
Yayımlandığı Sayı | Yıl 2023 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr