In this study, unsteady three dimensional cavity flow and aerodynamically generated noise for Mach number 0.85 and Reynolds number 1.3x107 were investigated using OpenFOAM. In order to observe the effect of flow field modeling on noise generation, two flow field modeling were performed. In addition to the effect of the flow field model, the effect of the density of the ağ r the wall region and the growth rates of the cells on the aeroacoustics findings were investigated. Two turbulence models were used for unsteady investigations, namely the Large-Eddy Simulation (LES) and the Detached-Eddy Simulation (DES). Two subgrid-scale models, Smagorinsky and Wall-Adapting Local Eddy-Viscosity, were used to resolve small eddies in LES. Three models, namely Spalart-Allmaras based DDES, IDDES and SST k-ω based DES, were used in DES analyses. Results calculated for the cavity were verified by comparing the reference studies results with the acoustic signal data in both location and frequency space. Although the Overall Sound Pressure Level data obtained as a result of the analyzes showed similar behavior with the experimental data, a deviation of 8-10 decibels was observed. In the Sound Pressure Level results, Rossiter modes are visible and results are compatible with both experimental and numerical studies.
1. Abderrahmane, B., Rezoug, T., & Dala, L. (2019). Passive control of cavity acoustics via the use of surface waviness at subsonic flow. Aircraft Engineering and Aerospace Technology, 91(2), 296–308. https://doi.org/10.1108/AEAT-01-2018-0061
2. Avallone, E. A., & Baumeister, T. I. (1996). Marks’ Standard Handbook for Mechanical Engineers (Tenth Edit). New York.
3. Bacci, D., & Saddington, A. J. (2023). Hilbert–Huang Spectral Analysis of Cavity Flows Incorporating Fluidic Spoilers. AIAA Journal, 61(1), 271–284. https://doi.org/10.2514/1.J061917
4. Cattafesta, L. N., Song, Q., Williams, D. R., Rowley, C. W., & Alvi, F. S. (2008). Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences, 44(7–8), 479–502.
https://doi.org/10.1016/j.paerosci.2008.07.002
5. Cui, P. et al. (2022). Improved Delayed Detached-Eddy Investigations on the Flow Control of the Leading-Edge Flat Spoiler of the Cavity in the Low-Aspect-Ratio Aircraft. Aerospace, 9(9), 1–27.
https://doi.org/10.3390/aerospace9090526
6. Demir, O., Çelik, B., & Güleren, K. M. (2018). Transonı̇k akişlarda gı̇rdap üreteçlerı̇nı̇n kavı̇te gürültüsüne etkı̇sı̇. In VII. ULUSAL HAVACILIK VE UZAY KONFERANSI (pp. 1–10). Samsun. Retrieved from
http://www.uhuk.org.tr/bildiri.php/UHUK-2018-117
7. Demir, O., Çelik, B., & Güleren, K. M. (2021). Noise Reduction of Open Cavities By Passive Flow Control Methods At Transonic Speeds Using Openfoam. Journal of Aeronautics and Space Technologies,
14(2), 193–208. Retrieved from https://jast.hho.msu.edu.tr/index.php/JAST/article/view/467
8. Fadıl, A. C., & Zafer, B. (2022a). Kararsız Transonik Kavite Akışında Ağ Yapısı ve Türbülans Modelinin Akustik Basınç Üzerindeki Etkisinin OpenFOAM ile Değerlendirilmesi. In 9. Ulusal Havacılık ve Uzay
Konferansı (pp. 1–10). İzmir. Retrieved from http://uhuk.org.tr/bildiri.php/UHUK-2022-081
9. Fadıl, A. C., & Zafer, B. (2022b). Parallel Aeroacoustic Computation of Unsteady Transonic Cavity Flow via Open CFD Source Codes. In 7. Ulusal Yüksek Başarımlı Hesaplama Konferansı.
10. Fadıl, A. C., & Zafer, B. (2023). Parallel aeroacoustic computation of unsteady transonic weapon bay using detached-eddy simulation via open computational fluid dynamics source codes.
Concurrency and Computation: Practice and Experience, (February), 1–17. https://doi.org/10.1002/cpe.7675
11. Gelisli, K. A., Aradag, S., Tascioglu, Y., & Ozer, M. B. (2019). Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities. 25th AIAA/CEAS
Aeroacoustics Conference, 2019, (May), 1–18. https://doi.org/10.2514/6.2019-2694
12. Greenshields, C. (2018). OpenFOAM user guide Version 6. The OpenFOAM Foundation.
13. Guleren, K. M., Turk, S., Demircan, O. M., & Demir, O. (2018). Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques. IOP Conference Series: Materials Science and Engineering,
326(1), 0–6. https://doi.org/10.1088/1757-899X/326/1/012015
14. Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-induced pressure oscillations in shallow cavities. Journal of Sound and Vibration, 18(4), 545–553. https://doi.org/10.1016/0022-460X(71)90105-2
15. Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 434(1890), 9–13. https://doi.org/10.1098/rspa.1991.0075
16. Lawson, S. J., & Barakos, G. N. (2010). Computational fluid dynamics analyses of flow over weapons-bay geometries. Journal of Aircraft, 47(5), 1605–1623. https://doi.org/10.2514/1.C000218
17. Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186–216.
https://doi.org/10.1016/j.paerosci.2010.11.002
18. Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, 18(PA), 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
19. Loupy, G. J. M., Barakos, G. N., & Kusyumov, A. (2017). Acoustic field around a transonic cavity flow. International Journal of Aeroacoustics, 16(6), 507–535. https://doi.org/10.1177/1475472X17730459
20. Nightingale, D., Ross, J., & Foster, G. (2005). Cavity unsteady pressure measurements— examples from wind-tunnel tests. Aerodynamics & Aeromechanics Systems Group, Technical Report Version
3, QinetiQ.
21. Nilsson, S., Yao, H. D., Karlsson, A., & Arvidson, S. (2022). Effects of Aeroelastic Walls on the Aeroacoustics in Transonic Cavity Flow †. Aerospace, 9(11). https://doi.org/10.3390/aerospace9110716
22. Rajkumar, K., Tangermann, E., Klein, M., Ketterl, S., & Winkler, A. (2023). Time ‑ efficient simulations of fighter aircraft weapon bay. CEAS Aeronautical Journal, (123456789).
https://doi.org/10.1007/s13272-022-00630-1
23. Rossiter, J. (1964). Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Royal Aircraft Establishment, TR 64037.
24. Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6),
1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
25. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–164. https://doi.org/https://doi.org/10.1175/1520-
0493(1963)091<0099:GCEWTP>2.3.CO;2
26. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational
Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
27. Spalart, P. R., Jou, W. H., Strelets, M. K., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Proceedings of first AFOSR international conference
on DNS/LES (Vol. 1, pp. 137–47). Greyden Press.
28. Vanco, L., & Pierce, A. D. (1998). Acoustics: An Introduction to Its Physical Principles and Applications. Computer Music Journal (Vol. 22). https://doi.org/10.2307/3680971
29. Zafer, B., & Cosgun, F. (2018). Kavite Akışının Aeroakustik Analizi. Isı Bilimi ve Tekniği Dergisi, 38(2), 25–38.
30. Zafer, B., & Konan, O. (2017). Kavite – Kanat Kesiti Etkileşiminin Aeroakustik Analizi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, 19(59), 279–294.
https://doi.org/10.21205/deufmd. 2017195523
31. Zheng, Y., Zhang, J., Li, H., Wu, X., & Jia, H. (2022). Flow Characteristic Study of High-speed Cavity Based on Detached-eddy Simulations. Journal of Physics: Conference Series, 2280(1).
https://doi.org/10.1088/1742-6596/2280/1/012009
Bu çalışmada Mach sayısı 0.85 ve Reynolds sayısı 1.3x107 için zamana bağlı 3 boyutlu kavite akışı ve kavite boyunca anlık basınç salınımlarından kaynaklı oluşan gürültü açık kaynaklı Hesaplamalı Akışkanlar Dinamiği çözücüsü olan OpenFOAM kullanılarak incelenmiştir. Akış alanı modellemesinin gürültü oluşumuna etkisini gözlemlemek için iki farklı akış alanı modellemesi yapılmıştır. Akış alanı modelinin etkisine ek olarak duvar bölgesindeki ağ sıklığı ve ağdaki hücrelerin büyüme oranlarının aeroakustik bulgular üzerindeki etkisi incelenmiştir. Üç boyutlu akış alanının zamana bağlı incelemelerinde, Büyük Burgaç Benzetimi (LES) ve Ayrık Burgaç Benzetimi (DES) olmak üzere iki türbülans modeli kullanılmıştır. LES analizlerinde küçük girdap yapılarını çözmek için Smagorinsky ve WALE olmak üzere iki ağ-altı ölçek modeli kullanılmıştır. DES analizlerinde Spalart-Allmaras tabanlı DDES, IDDES ve SST k-ω tabanlı DES olmak üzere üç model kullanılmıştır. Transonik kavite için hesaplanan sayısal sonuçlar deneysel ve nümerik sonuçlarla hem konum hem frekans uzayında akustik sinyal verisi için karşılaştırılarak doğrulanmıştır. Analizler sonucu elde edilen konum uzayındaki Ortalama Ses Basınç Düzeyi verisi kavite gürültüsüne ait deneysel veri ile benzer davranışı gösterse de 8-10 desibellik bir sapma görülmüştür. Frekans uzayındaki Ses Basınç Düzeyi sonuçlarında ise Rossiter modları belirgin şekilde gözükmektedir ve hem deneysel hem nümerik çalışmaya yakın sonuçlar elde edilmiştir.
1. Abderrahmane, B., Rezoug, T., & Dala, L. (2019). Passive control of cavity acoustics via the use of surface waviness at subsonic flow. Aircraft Engineering and Aerospace Technology, 91(2), 296–308. https://doi.org/10.1108/AEAT-01-2018-0061
2. Avallone, E. A., & Baumeister, T. I. (1996). Marks’ Standard Handbook for Mechanical Engineers (Tenth Edit). New York.
3. Bacci, D., & Saddington, A. J. (2023). Hilbert–Huang Spectral Analysis of Cavity Flows Incorporating Fluidic Spoilers. AIAA Journal, 61(1), 271–284. https://doi.org/10.2514/1.J061917
4. Cattafesta, L. N., Song, Q., Williams, D. R., Rowley, C. W., & Alvi, F. S. (2008). Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences, 44(7–8), 479–502.
https://doi.org/10.1016/j.paerosci.2008.07.002
5. Cui, P. et al. (2022). Improved Delayed Detached-Eddy Investigations on the Flow Control of the Leading-Edge Flat Spoiler of the Cavity in the Low-Aspect-Ratio Aircraft. Aerospace, 9(9), 1–27.
https://doi.org/10.3390/aerospace9090526
6. Demir, O., Çelik, B., & Güleren, K. M. (2018). Transonı̇k akişlarda gı̇rdap üreteçlerı̇nı̇n kavı̇te gürültüsüne etkı̇sı̇. In VII. ULUSAL HAVACILIK VE UZAY KONFERANSI (pp. 1–10). Samsun. Retrieved from
http://www.uhuk.org.tr/bildiri.php/UHUK-2018-117
7. Demir, O., Çelik, B., & Güleren, K. M. (2021). Noise Reduction of Open Cavities By Passive Flow Control Methods At Transonic Speeds Using Openfoam. Journal of Aeronautics and Space Technologies,
14(2), 193–208. Retrieved from https://jast.hho.msu.edu.tr/index.php/JAST/article/view/467
8. Fadıl, A. C., & Zafer, B. (2022a). Kararsız Transonik Kavite Akışında Ağ Yapısı ve Türbülans Modelinin Akustik Basınç Üzerindeki Etkisinin OpenFOAM ile Değerlendirilmesi. In 9. Ulusal Havacılık ve Uzay
Konferansı (pp. 1–10). İzmir. Retrieved from http://uhuk.org.tr/bildiri.php/UHUK-2022-081
9. Fadıl, A. C., & Zafer, B. (2022b). Parallel Aeroacoustic Computation of Unsteady Transonic Cavity Flow via Open CFD Source Codes. In 7. Ulusal Yüksek Başarımlı Hesaplama Konferansı.
10. Fadıl, A. C., & Zafer, B. (2023). Parallel aeroacoustic computation of unsteady transonic weapon bay using detached-eddy simulation via open computational fluid dynamics source codes.
Concurrency and Computation: Practice and Experience, (February), 1–17. https://doi.org/10.1002/cpe.7675
11. Gelisli, K. A., Aradag, S., Tascioglu, Y., & Ozer, M. B. (2019). Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities. 25th AIAA/CEAS
Aeroacoustics Conference, 2019, (May), 1–18. https://doi.org/10.2514/6.2019-2694
12. Greenshields, C. (2018). OpenFOAM user guide Version 6. The OpenFOAM Foundation.
13. Guleren, K. M., Turk, S., Demircan, O. M., & Demir, O. (2018). Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques. IOP Conference Series: Materials Science and Engineering,
326(1), 0–6. https://doi.org/10.1088/1757-899X/326/1/012015
14. Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-induced pressure oscillations in shallow cavities. Journal of Sound and Vibration, 18(4), 545–553. https://doi.org/10.1016/0022-460X(71)90105-2
15. Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences, 434(1890), 9–13. https://doi.org/10.1098/rspa.1991.0075
16. Lawson, S. J., & Barakos, G. N. (2010). Computational fluid dynamics analyses of flow over weapons-bay geometries. Journal of Aircraft, 47(5), 1605–1623. https://doi.org/10.2514/1.C000218
17. Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186–216.
https://doi.org/10.1016/j.paerosci.2010.11.002
18. Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, 18(PA), 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
19. Loupy, G. J. M., Barakos, G. N., & Kusyumov, A. (2017). Acoustic field around a transonic cavity flow. International Journal of Aeroacoustics, 16(6), 507–535. https://doi.org/10.1177/1475472X17730459
20. Nightingale, D., Ross, J., & Foster, G. (2005). Cavity unsteady pressure measurements— examples from wind-tunnel tests. Aerodynamics & Aeromechanics Systems Group, Technical Report Version
3, QinetiQ.
21. Nilsson, S., Yao, H. D., Karlsson, A., & Arvidson, S. (2022). Effects of Aeroelastic Walls on the Aeroacoustics in Transonic Cavity Flow †. Aerospace, 9(11). https://doi.org/10.3390/aerospace9110716
22. Rajkumar, K., Tangermann, E., Klein, M., Ketterl, S., & Winkler, A. (2023). Time ‑ efficient simulations of fighter aircraft weapon bay. CEAS Aeronautical Journal, (123456789).
https://doi.org/10.1007/s13272-022-00630-1
23. Rossiter, J. (1964). Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Royal Aircraft Establishment, TR 64037.
24. Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6),
1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
25. Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91, 99–164. https://doi.org/https://doi.org/10.1175/1520-
0493(1963)091<0099:GCEWTP>2.3.CO;2
26. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational
Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
27. Spalart, P. R., Jou, W. H., Strelets, M. K., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Proceedings of first AFOSR international conference
on DNS/LES (Vol. 1, pp. 137–47). Greyden Press.
28. Vanco, L., & Pierce, A. D. (1998). Acoustics: An Introduction to Its Physical Principles and Applications. Computer Music Journal (Vol. 22). https://doi.org/10.2307/3680971
29. Zafer, B., & Cosgun, F. (2018). Kavite Akışının Aeroakustik Analizi. Isı Bilimi ve Tekniği Dergisi, 38(2), 25–38.
30. Zafer, B., & Konan, O. (2017). Kavite – Kanat Kesiti Etkileşiminin Aeroakustik Analizi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, 19(59), 279–294.
https://doi.org/10.21205/deufmd. 2017195523
31. Zheng, Y., Zhang, J., Li, H., Wu, X., & Jia, H. (2022). Flow Characteristic Study of High-speed Cavity Based on Detached-eddy Simulations. Journal of Physics: Conference Series, 2280(1).
https://doi.org/10.1088/1742-6596/2280/1/012009
Fadıl, A. C., & Zafer, B. (2023). TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 417-436. https://doi.org/10.17482/uumfd.1227244
AMA
Fadıl AC, Zafer B. TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ. UUJFE. August 2023;28(2):417-436. doi:10.17482/uumfd.1227244
Chicago
Fadıl, Ali Can, and Baha Zafer. “TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 2 (August 2023): 417-36. https://doi.org/10.17482/uumfd.1227244.
EndNote
Fadıl AC, Zafer B (August 1, 2023) TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 2 417–436.
IEEE
A. C. Fadıl and B. Zafer, “TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ”, UUJFE, vol. 28, no. 2, pp. 417–436, 2023, doi: 10.17482/uumfd.1227244.
ISNAD
Fadıl, Ali Can - Zafer, Baha. “TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/2 (August 2023), 417-436. https://doi.org/10.17482/uumfd.1227244.
Fadıl, Ali Can and Baha Zafer. “TRANSONİK KAVİTE AKIŞININ AÇIK KAYNAKLI HESAPLAMALI AEROAKUSTİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 2, 2023, pp. 417-36, doi:10.17482/uumfd.1227244.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr