Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsan İskeleti için Kullanılan İmplant ve Protezlere Gelen Yüklerin Hesaplanması için Bir Yöntemin Geliştirilmesi

Yıl 2023, , 867 - 886, 27.12.2023
https://doi.org/10.17482/uumfd.1277020

Öz

Bu araştırma, kullanıcıların yaşam kalitesini iyileştirmeyi hedefleyen sürdürülebilir diz eksartikülasyon protezlerini kişiselleştirebilmek adına yenilikçi bir hesaplama metodolojisi önermektedir. MATLAB ile kinematik denklemlerin çözümünü, Solidworks ile hareket analizini ve ANSYS Workbench ile malzeme ve statik analizleri gerçekleştirecek şekilde özel bir hesaplama tekniği formüle edilmiştir. Bu araçların bütünleştirilmesi, tasarım ve analitik sonuçların doğrulanmasını mümkün kılmıştır. Kinematik çözümler, bireyin ve protezin ağırlıklarını dikkate alarak, protezin işlevselliğine uygun hareket aralığında lineer ve açısal dinamikleri incelemiştir. Protezin üzerindeki maksimum kuvvet etkisini belirlemek amacıyla statik analiz gerçekleştirilmiştir. Araştırmanın bulguları, 20 ile 80 yaşları arasında, 160-190 cm boy ve 80-120 kg ağırlık aralığında olan bireyler için en uygun protez özelliklerinin tespit edilmesine katkı sağlamıştır. Protez tasarımı, koşma ve zıplama gibi geniş bir hareket aralığı gerektiren aktivitelerde hareket serbestliğini desteklemiştir. Protez, vücut hareketlerine çabucak adapte olmuş ve yaklaşık üç saniye içinde kullanıma hazır duruma gelmiştir. Bu çalışma, protez tasarımının anatomik ve kinematik açılardan en iyi şekilde optimize edilmesi için mühendislik ve tıp disiplinleri arasındaki iş birliğinin kritik önemini vurgulamaktadır.

Kaynakça

  • 1. An, N. (2013). Human Femur Bone. https://grabcad.com/library/human-femur-bone-1 (Erişim Tarihi: 28.03.2022)
  • 2. Anon (2016). Ön çapraz bağ yaralanması. https://bezmialemdragoshastanesi.com/tr/Sayfalar/ortopedi/on-capraz-bag-yaralanmasi.aspx (Erişim Tarihi: 28.03.2022)
  • 3. Anon (2022a). Anatomide hareket terimleri. Vikipedi, Özgür Ansiklopedi. https://tr.wikipedia.org/wiki/Anatomide_hareket_terimleri (Erişim Tarihi: 07.05.2022)
  • 4. Anon (2022b). Kinematics. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Kinematics&oldid=1080472428 (Erişim Tarihi: 07.05.2022)
  • 5. Anon (2022c). Femur by Anatomy Next. https://anatomy.app/encyclopedia/femur (Erişim Tarihi: 08.05.2022)
  • 6. AnyBody Technology. (2020, December 7). [Webcast] - Physical stresses on caregivers when repositioning patients in bed [Video]. YouTube. https://www.youtube.com/watch?v=knOfERwrBbI (Erişim Tarihi: 08.05.2022)
  • 7. AnyBody Technology. (2021a, April 8). [Webcast] – Uncertainties on knee ligament properties estimated from laxity measurements [Video]. YouTube. https://www.youtube.com/watch?v=-zoj829VDsk (Erişim Tarihi: 08.05.2022)
  • 8. AnyBody Technology. (2021b, February 19). [Webcast] – AnyBodyRun: A web application for running biomechanics [Video]. YouTube. https://www.youtube.com/watch?v=6zNbbP8XzUk (Erişim Tarihi: 08.05.2022)
  • 9. AnyBody Technology. (2021c, January 18). [Webcast] – Biomechanical investigation of a passive upper extremity exoskeleton for manual handling [Video]. YouTube. https://www.youtube.com/watch? v=HSsvjouKIQQ (Erişim Tarihi: 09.05.2022)
  • 10. AnyBody Technology. (2021d, May 11). [Webcast] – A model-based methodology to predict the biomechanical consequences of tibial inserts [Video]. YouTube. https://www.youtube.com/watch? v=1CVlqJDRNOU (Erişim Tarihi: 09.05.2022)
  • 11. AnyBody Technology. (2022a, January 28). [Webcast] – Investigation of bracing to unload muscle and knee contact forces for knee patients [Video]. YouTube https://www.youtube.com/watch? v=AcFMkJ8IvpI (Erişim Tarihi: 09.05.2022)
  • 12. AnyBody Technology. (2022b, May 06). [Webcast] – The Role of the Anterior Hip Capsule in Daily Hip Performance [Video.] YouTube https://www.youtube.com/watch?v=xnvg7GxUI_Y (Erişim Tarihi: 09.05.2022)
  • 13. Castermans T, Duvinage M, Cheron G, & Dutoit T. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems. Brain Sciences. 2014; 4(1):1-48. https://doi.org/10.3390/brainsci4010001
  • 14. Diogo, S. (2012). Prosthetic Leg. https://grabcad.com/library/prosthetic-leg (Erişim Tarihi: 03.04.2022)
  • 15. Joseph C. McCarthy, Philip C. Noble & Richard N. Villar, (2017). Hip Joint Restoration. Worldwide Advances in Arthoscopy, Arthroplasty, Osteotomy nad Joint Preservation Surgery. Springer Nature. https://doi.org/10.1007/978-1-4614-0694-5.
  • 16. Lei, Shuangyan & Frank, Matthew & Anderson, Donald & Brown, Thomas, (2014). A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach. Rapid Prototyping Journal. 20. https://doi.org/10.1108/RPJ-10-2012-0095
  • 17. M. Garrett, T. Kerr, & B. Caulfield, (1999). Phase-Dependent Inhibition of H-Reflexes During Walking in Humans Is Independent of Reduction in Knee Angular Velocity. Journal of Neurophysiology, 82(2), 747-753. https://doi.org/10.1152/jn.1999.82.2.747
  • 18. Morrey, B., & Berry, D. (2011). Joint Replacement Arthroplasty (4th ed.). Wolters Kluwer.
  • 19. Öncen, H. (2016). Ossa Crucis (Tibia - fibula). https://aduvetfak.wordpress.com/2016/12/26/ossa-cruris-tibia-fibula/ (Erişim Tarihi: 05.03.2022)
  • 20. Rony I., Idsart Kingma, Vosse de Boode, Gert S. Faber, & Jaap H. van Dieën (2020). Angular velocity, moment, and power analysis of the ankle, knee, and hip joints in the goalkeeper’s diving save in football. Frontiers in Sports and Active Living, 2, 2020, ISSN 2624-9367, doi:10.3389/fspor.2020.00013
  • 21. Silver-Thorn, M. B., & Childress, D. S. (1997). Generic, geometric finite element analysis of the transtibial residual limb and prosthetic socket. Journal of rehabilitation research and development, 34(2), 171–186. https://pubmed.ncbi.nlm.nih.gov/9108344/
  • 22. Singh, A. P., (2017). Femur Anatomy and Attachments. https://boneandspine.com/femur-anatomy-and-attachments/ (Erişim Tarihi: 12.05.2022)
  • 23. Takashi Fukaya, Wataru Nakano, Hirotaka Mutsuzaki, & Koichi Mori (2018). Smoothness of the knee joint movement during the stance phase in patients with severe knee osteoarthritis. Asia-Pacific Journal of Sports Medicine, 14, 1-5, ISSN 2214-6873, https://doi.org/10.1016/j.asmart.2018.08.002
  • 24. Taylor, T. (2019). Bones of the Leg and Foot. https://www.innerbody.com/anatomy/skeletal/leg-foot (Erişim Tarihi: 15.05.2022)
  • 25. Tunc, I. E. (2022). CT Görüntülü Femur – Tibia Kemiklerinin Katı Modelinden Diz İmplantı Analizi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 140-157. https://doi.org/10.53433/yyufbed.1036092
  • 26. Verim Ö., Tasgetiren S., & Öksüz M., (2010). Bilgisayar Destekli Organ Mühendisliği Temel Yaklaşımları. Biyoteknoloji Elektronik Dergisi, 1, 27-34. (Erişim Tarihi: 07.05.2022)
  • 27. Wang, Zheng & Li, Haiyun (2005). A novel 3D finite element modeling based on medical images for intervertebral disc biomechanical analysis. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 3. 3202-5. https://doi.org/10.1109/IEMBS.2005.1617157
  • 28. Xiaohong Jia, Ming Zhang, & Winson C.C Lee, (2004). Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects, Journal of Biomechanics, 37 (9), 1371-1377, ISSN 0021- 9290, https://doi.org/10.1016/j.jbiomech.2003.12.024
  • 29. Zachariah, S. G., & Sanders, J. E. (2000). Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. Journal of Biomechanics, 33 (7), 895–899. https://doi.org/10.1016/S0021-9290(00)00022-1
  • 30. Zhang, M., & Roberts, C. (2000). Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Medical engineering & physics, 22(9), 607– 612. https://doi.org/10.1016/S1350-4533(00)00079-5
  • 31. Zhang, M., Mak, A. F., & Roberts, V. C. (1998a). Finite element modelling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Medical engineering & physics, 20(5), 360–373. https://doi.org/10.1016/s1350-4533(98)00027-7
  • 32. Zhang, M., Turner-Smith, A. R., Tanner, A., & Roberts, V. C. (1998b). Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Medical engineering & physics, 20(3), 188– 198. https://doi.org/10.1016/s1350-4533(98)00013-7

DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON

Yıl 2023, , 867 - 886, 27.12.2023
https://doi.org/10.17482/uumfd.1277020

Öz

The study proposes a novel computational approach for customizing sustainable knee disarticulation prostheses, aimed at improving the quality of life for users. A specialized calculation technique for assessing the loads and moments on the prosthesis was formulated, leveraging MATLAB for solving kinematic equations, Solidworks for motion analysis, and ANSYS Workbench for material and static analysis. The integration of these tools enabled the validation of the design and analytical outcomes. The kinematic solutions accounted for individual and prosthesis weights, analyzing linear and angular dynamics over a motion range pertinent to the prosthetic leg's function. Static analysis was executed to determine maximum force impact on the prosthesis. The study's results were conducive to identifying the most suitable prosthesis characteristics for individuals aged 20 to 80, with a height of 160-190 cm and a weight of 80-120 kg. The prosthetic design promoted ease of movement in activities requiring a range of motion, such as running and jumping. The prosthesis adapted swiftly to body movements, achieving readiness in approximately three seconds. The research underscores the importance of interdisciplinary collaboration between engineers and medical professionals to optimize the anatomical and kinematic aspects of prosthesis design.

Kaynakça

  • 1. An, N. (2013). Human Femur Bone. https://grabcad.com/library/human-femur-bone-1 (Erişim Tarihi: 28.03.2022)
  • 2. Anon (2016). Ön çapraz bağ yaralanması. https://bezmialemdragoshastanesi.com/tr/Sayfalar/ortopedi/on-capraz-bag-yaralanmasi.aspx (Erişim Tarihi: 28.03.2022)
  • 3. Anon (2022a). Anatomide hareket terimleri. Vikipedi, Özgür Ansiklopedi. https://tr.wikipedia.org/wiki/Anatomide_hareket_terimleri (Erişim Tarihi: 07.05.2022)
  • 4. Anon (2022b). Kinematics. In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Kinematics&oldid=1080472428 (Erişim Tarihi: 07.05.2022)
  • 5. Anon (2022c). Femur by Anatomy Next. https://anatomy.app/encyclopedia/femur (Erişim Tarihi: 08.05.2022)
  • 6. AnyBody Technology. (2020, December 7). [Webcast] - Physical stresses on caregivers when repositioning patients in bed [Video]. YouTube. https://www.youtube.com/watch?v=knOfERwrBbI (Erişim Tarihi: 08.05.2022)
  • 7. AnyBody Technology. (2021a, April 8). [Webcast] – Uncertainties on knee ligament properties estimated from laxity measurements [Video]. YouTube. https://www.youtube.com/watch?v=-zoj829VDsk (Erişim Tarihi: 08.05.2022)
  • 8. AnyBody Technology. (2021b, February 19). [Webcast] – AnyBodyRun: A web application for running biomechanics [Video]. YouTube. https://www.youtube.com/watch?v=6zNbbP8XzUk (Erişim Tarihi: 08.05.2022)
  • 9. AnyBody Technology. (2021c, January 18). [Webcast] – Biomechanical investigation of a passive upper extremity exoskeleton for manual handling [Video]. YouTube. https://www.youtube.com/watch? v=HSsvjouKIQQ (Erişim Tarihi: 09.05.2022)
  • 10. AnyBody Technology. (2021d, May 11). [Webcast] – A model-based methodology to predict the biomechanical consequences of tibial inserts [Video]. YouTube. https://www.youtube.com/watch? v=1CVlqJDRNOU (Erişim Tarihi: 09.05.2022)
  • 11. AnyBody Technology. (2022a, January 28). [Webcast] – Investigation of bracing to unload muscle and knee contact forces for knee patients [Video]. YouTube https://www.youtube.com/watch? v=AcFMkJ8IvpI (Erişim Tarihi: 09.05.2022)
  • 12. AnyBody Technology. (2022b, May 06). [Webcast] – The Role of the Anterior Hip Capsule in Daily Hip Performance [Video.] YouTube https://www.youtube.com/watch?v=xnvg7GxUI_Y (Erişim Tarihi: 09.05.2022)
  • 13. Castermans T, Duvinage M, Cheron G, & Dutoit T. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems. Brain Sciences. 2014; 4(1):1-48. https://doi.org/10.3390/brainsci4010001
  • 14. Diogo, S. (2012). Prosthetic Leg. https://grabcad.com/library/prosthetic-leg (Erişim Tarihi: 03.04.2022)
  • 15. Joseph C. McCarthy, Philip C. Noble & Richard N. Villar, (2017). Hip Joint Restoration. Worldwide Advances in Arthoscopy, Arthroplasty, Osteotomy nad Joint Preservation Surgery. Springer Nature. https://doi.org/10.1007/978-1-4614-0694-5.
  • 16. Lei, Shuangyan & Frank, Matthew & Anderson, Donald & Brown, Thomas, (2014). A Method to Represent Heterogeneous Materials for Rapid Prototyping: The Matryoshka Approach. Rapid Prototyping Journal. 20. https://doi.org/10.1108/RPJ-10-2012-0095
  • 17. M. Garrett, T. Kerr, & B. Caulfield, (1999). Phase-Dependent Inhibition of H-Reflexes During Walking in Humans Is Independent of Reduction in Knee Angular Velocity. Journal of Neurophysiology, 82(2), 747-753. https://doi.org/10.1152/jn.1999.82.2.747
  • 18. Morrey, B., & Berry, D. (2011). Joint Replacement Arthroplasty (4th ed.). Wolters Kluwer.
  • 19. Öncen, H. (2016). Ossa Crucis (Tibia - fibula). https://aduvetfak.wordpress.com/2016/12/26/ossa-cruris-tibia-fibula/ (Erişim Tarihi: 05.03.2022)
  • 20. Rony I., Idsart Kingma, Vosse de Boode, Gert S. Faber, & Jaap H. van Dieën (2020). Angular velocity, moment, and power analysis of the ankle, knee, and hip joints in the goalkeeper’s diving save in football. Frontiers in Sports and Active Living, 2, 2020, ISSN 2624-9367, doi:10.3389/fspor.2020.00013
  • 21. Silver-Thorn, M. B., & Childress, D. S. (1997). Generic, geometric finite element analysis of the transtibial residual limb and prosthetic socket. Journal of rehabilitation research and development, 34(2), 171–186. https://pubmed.ncbi.nlm.nih.gov/9108344/
  • 22. Singh, A. P., (2017). Femur Anatomy and Attachments. https://boneandspine.com/femur-anatomy-and-attachments/ (Erişim Tarihi: 12.05.2022)
  • 23. Takashi Fukaya, Wataru Nakano, Hirotaka Mutsuzaki, & Koichi Mori (2018). Smoothness of the knee joint movement during the stance phase in patients with severe knee osteoarthritis. Asia-Pacific Journal of Sports Medicine, 14, 1-5, ISSN 2214-6873, https://doi.org/10.1016/j.asmart.2018.08.002
  • 24. Taylor, T. (2019). Bones of the Leg and Foot. https://www.innerbody.com/anatomy/skeletal/leg-foot (Erişim Tarihi: 15.05.2022)
  • 25. Tunc, I. E. (2022). CT Görüntülü Femur – Tibia Kemiklerinin Katı Modelinden Diz İmplantı Analizi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 140-157. https://doi.org/10.53433/yyufbed.1036092
  • 26. Verim Ö., Tasgetiren S., & Öksüz M., (2010). Bilgisayar Destekli Organ Mühendisliği Temel Yaklaşımları. Biyoteknoloji Elektronik Dergisi, 1, 27-34. (Erişim Tarihi: 07.05.2022)
  • 27. Wang, Zheng & Li, Haiyun (2005). A novel 3D finite element modeling based on medical images for intervertebral disc biomechanical analysis. Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 3. 3202-5. https://doi.org/10.1109/IEMBS.2005.1617157
  • 28. Xiaohong Jia, Ming Zhang, & Winson C.C Lee, (2004). Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects, Journal of Biomechanics, 37 (9), 1371-1377, ISSN 0021- 9290, https://doi.org/10.1016/j.jbiomech.2003.12.024
  • 29. Zachariah, S. G., & Sanders, J. E. (2000). Finite element estimates of interface stress in the trans-tibial prosthesis using gap elements are different from those using automated contact. Journal of Biomechanics, 33 (7), 895–899. https://doi.org/10.1016/S0021-9290(00)00022-1
  • 30. Zhang, M., & Roberts, C. (2000). Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket. Medical engineering & physics, 22(9), 607– 612. https://doi.org/10.1016/S1350-4533(00)00079-5
  • 31. Zhang, M., Mak, A. F., & Roberts, V. C. (1998a). Finite element modelling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Medical engineering & physics, 20(5), 360–373. https://doi.org/10.1016/s1350-4533(98)00027-7
  • 32. Zhang, M., Turner-Smith, A. R., Tanner, A., & Roberts, V. C. (1998b). Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Medical engineering & physics, 20(3), 188– 198. https://doi.org/10.1016/s1350-4533(98)00013-7
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ismet Emircan Tunc 0000-0001-6212-4381

Gürsel Şefkat 0000-0002-5686-0195

Erken Görünüm Tarihi 2 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 4 Nisan 2023
Kabul Tarihi 5 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Tunc, I. E., & Şefkat, G. (2023). DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 867-886. https://doi.org/10.17482/uumfd.1277020
AMA Tunc IE, Şefkat G. DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON. UUJFE. Aralık 2023;28(3):867-886. doi:10.17482/uumfd.1277020
Chicago Tunc, Ismet Emircan, ve Gürsel Şefkat. “DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 3 (Aralık 2023): 867-86. https://doi.org/10.17482/uumfd.1277020.
EndNote Tunc IE, Şefkat G (01 Aralık 2023) DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 867–886.
IEEE I. E. Tunc ve G. Şefkat, “DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON”, UUJFE, c. 28, sy. 3, ss. 867–886, 2023, doi: 10.17482/uumfd.1277020.
ISNAD Tunc, Ismet Emircan - Şefkat, Gürsel. “DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (Aralık 2023), 867-886. https://doi.org/10.17482/uumfd.1277020.
JAMA Tunc IE, Şefkat G. DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON. UUJFE. 2023;28:867–886.
MLA Tunc, Ismet Emircan ve Gürsel Şefkat. “DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 3, 2023, ss. 867-86, doi:10.17482/uumfd.1277020.
Vancouver Tunc IE, Şefkat G. DEVELOPMENT OF A METHOD FOR CALCULATING LOADS ON IMPLANTS AND PROSTHESES USED FOR THE HUMAN SKELETON. UUJFE. 2023;28(3):867-86.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr