Desalinasyon işlemi sonucu ortaya çıkan yoğun suyun deniz deşarjı tesisleri yayıcı boruları aracılığıyla alıcı ortamlara kontrollü bir şekilde tahliye edilmeleri için uygun tasarımın yapılması önemlidir. Uygun tasarımın yapılması için yoğun jetlerin alıcı ortamlardaki biçimlerinin ve davranışlarının iyi analiz edilmesi gereklidir. Hesaplamalı Akışkanlar Dinamiği (HAD) modelleri, özellikle son yıllarda yoğun deşarjların modellenmesi ve yoğun jetlerin davranışlarının belirlenmesi için giderek artan bir sıklıkla kullanılmaktadırlar. Bu çalışmada literatürde yoğun deşarjlar üzerine farklı HAD yazılımları ve türbülans modelleri kullanılarak yapılmış çalışmalar sistematik olarak incelenmiştir. Çalışmanın ana amacı, farklı deşarj koşulları altında değişen parametrelerin yoğun jetlerin geometrik karakteristikleri ve karışma ve seyrelme süreçleri üzerindeki etkilerinin incelenmesidir. Ek olarak farklı HAD yazılımları ve türbülans modellerinin performanslarının karşılaştırılması ve değerlendirilmesi de hedeflenmiştir. Sonuçlar değişen deşarj parametrelerinin jetlerin biçimleri ve davranışlarını önemli ölçüde etkilediğini göstermektedir. Farklı deşarj ve alıcı ortam koşulları altında farklı modellerin değişken performanslar göstermektedir. En uygun performansı veren modelin kullanımının optimum tasarımı yapabilmek adına önemli olduğu görülmektedir.
Abessi, O. ve Roberts, P.J. (2018) Rosette diffusers for dense effluents in flowing currents, Journal of Hydraulic Engineering, 144(1), 06017024. doi:10.1061/(ASCE)HY.1943-7900.000140
Abessi, O. ve Roberts, P.J. (2017) Multiport diffusers for dense discharge in flowing ambient water, Journal of Hydraulic Engineering, 143(6), 04017003. doi:10.1061/(ASCE)HY.1943-7900.0001279
Abessi, O. ve Roberts, P.J. (2016) Dense jet discharges in shallow water, Journal of Hydraulic Engineering, 142(1), 04015033. doi:10.1061/(ASCE)HY.1943-7900.0001057
Abessi, O. ve Roberts, P.J. (2015) Effect of nozzle orientation on dense jets in stagnant environments, Journal of Hydraulic Engineering, 141(8), 06015009. doi:10.1061/(ASCE)HY.1943-7900.0001032
Abessi, O. (2018) Brine disposal and management—planning, design, and implementation. G. Gude (Dü.) içinde, Sustainable Desalination Handbook (s. 259-303). Elsevier. doi:10.1016/b978-0-12-809240-8.00007-1
Abou-Elhaggag, M.E., El-Gamal, M.H. ve Farouk, M.I. (2011) Experimental and numerical investigation of desalination plant outfalls in limited disposal areas, Journal of Environmental Protection, 2(6), 828-839. doi:10.4236/jep.2011.26094
Akbari, H. ve Ebrahimi, M.H. (2016) Near field mixing of multi-diffuser dense jets in shallow water condition and ambient currents, 15th National Hydraulic Conference, Iran. Qazvin.
Altuncu, F.F. (2004). Tasarım aşamasında uygun olmayan deşarj katsayısı kullanımının deniz deşarj tesisi yayıcı iç hidroliği üzerindeki etkileri, Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Amiri, N.S., Abessi, O. ve Roberts, P.J. (2024). Venturi nozzles for desalination brine discharges, Desalination, 573, 117193. doi: 10.1016/j.desal.2023.117193
Anılan, T. (2023). Deniz Deşarjı Hidroliği Lisansüstü Ders Notları, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
ANSYS CFX-Solver Modeling Guide. (2013). ANSYS, Inc.
ANSYS Fluent Theory Guide. (2011). ANSYS, Inc.
Ardalan, H. ve Vafaei, F. (2019) CFD and experimental study of 45° inclined thermal-saline reversible buoyant jets in stationary ambient, Environmental Processes, 6(1), 219-239. doi:/10.1007/s40710-019-00356-z
Baawain, M., Choudri, B.S., Ahmed, M. ve Purnama, A. (2015) An Overview: Desalination, Environmental and Marine Outfall Systems. Recent Progress in Desalination, Environmental and Marine Outfall Systems, 3–10. doi:10.1007/978-3-319-19123-2_1
Bashitialshaaer, R., Persson, K.M. ve Larson, M. (2015) New criteria for brine discharge outfalls from desalination plants. Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities: Innovations and Environmental Impacts (s. 451-467). içinde Springer. doi:10.1007/978-3-319-13203-7_19
Baum, M.J. ve Gibbes, B. (2020) Field-scale numerical modeling of a dense multiport diffuser outfall in crossflow, Journal of Hydraulic Engineering, 146(1), 05019006. doi:10.1061/(ASCE)HY.1943-7900.0001635
Baum, M.J., Albert, S., Grinham, A. ve Gibbes, B. (2019) Spatiotemporal influences of open-coastal forcing dynamics on a dense multiport diffuser outfall, Journal of Hydraulic Engineering, 145(10), 05019004. doi:10.1061/(ASCE)HY.1943-7900.0001622
Berkün, M. (2017) Atıksu Mühendisliği: Toplama, Arıtma, Uzaklaştırma ve Denize Deşarj Yapıları, Literatür Yayıncılık.
Berkün, M. (2006) Atık Su Arıtma ve Deniz Deşarjı Yapıları, Seçkin Yayıncılık, Ankara.
Bussoletti, J. (1994) CFD calibration and validation-The challenges of correlating computational model results with test data, 25th Plasmadynamics and Lasers Conference, 2542. doi:10.2514/6.1994-2542
Castro-Faccetti, C. (2020). Modelling dilution and transport processes from marine outfall discharges, Doktora Tezi. The University of Leeds, School of Civil Engineering, Leeds.
Castro-Faccetti, C., Borman, D., Sleigh, A., Khan, A. ve Eljaiek-Urzola, M. (2019) Three-Dimensional CFD Modelling of Mixing and Dispersion from Marine Outfall Discharges, In Proceedings of the 38th International Association for Hydro-Environment Engineering and Research (IAHR) World Congress. doi:10.3850/38WC092019-0467
Cipollina, A., Brucato, A., Grisafi, F. ve Nicosia, S. (2005) Bench-scale investigation of inclined dense jets, Journal of Hydraulic Engineering, 131(11), 1017-1022. doi:10.1061/(ASCE)0733-9429(2005)131:11(1017)
Danish, D. ve Murali, K. (2021) Performance of the single round nozzle of the marine outfall system for buoyant fluid at stable water in the unstratified water depth. Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019) (s. 157-170). Springer Singapore. doi:10.1007/978-981-15-8506-7_13
Darama, S. (2009). Yoğun atıksu deşarjının birinci seyrelmesinde görünür saçak modelinin uygulanması, Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Firoozabadi, B., Afshin, H. ve Aram, E. (2009) Three-dimensional modeling of density current in a straight channel, Journal of Hydraulic Engineering, 135(5), 393-402. doi:10.1061/(ASCE)HY.1943-7900.0000026
Hajdukiewicz, M., Geron, M. ve Keane, M.M. (2013) Formal calibration methodology for CFD models of naturally ventilated indoor environments. Building and Environment, 59, 290-302. doi:10.1016/j.buildenv.2012.08.027
Jiang, B., Law, A. W.-K. ve Lee, J. H.-W. (2014) Mixing of 30° and 45° inclined dense jets in shallow coastal waters, Journal of Hydraulic Engineering, 140(3), 241-253. doi:10.1061/(ASCE)HY.1943-7900.0000819
Jirka, G.H. (2008) Improved discharge configurations for brine effluents from desalination plants, Journal of Hydraulic Engineering, 134(1), 116-120. doi:10.1061/(ASCE)0733-9429(2008)134:1(116)
Jirka, G.H. (2006) Integral model for turbulent buoyant jets in unbounded stratified flows Part 2: Plane jet dynamics resulting from multiport diffuser jets, Environmental Fluid Mechanics, 6, 43-100. doi:10.1007/s10652-005-4656-0
Jirka, G.H. (2004) Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: Single round jet, Environmental Fluid Mechanics, 4(1), 1-56. doi:10.1023/A:1025583110842
Kaye, N. ve Linden, P. (2004) Coalescing axisymmetric turbulent plumes, Journal of Fluid Mechanics, 502, 41-63. doi:10.1017/S0022112003007250
Kheirkhah Gildeh, H., Mohammadian, A. ve Nistor, I. (2022) Vertical dense effluent discharge modelling in shallow waters. Water, 14(15), 2312. doi:10.3390/w14152312
Kheirkhah Gildeh, H., Mohammadian, A. ve Nistor, I. (2021) Inclined dense effluent discharge modelling in shallow waters, Environmental Fluid Mechanics, 21, 955-987. doi:10.1007/s10652-021-09805-6
Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I. ve Qiblawey, H. (2015) Numerical modeling of 30◦ and 45◦ inclined dense turbulent jets in stationary ambient, Environmental Fluid Mechanics, 15, 537-562. doi:10.1007/s10652-014-9372-1
Lai, C.C. ve Lee, J.H. (2012) Mixing of inclined dense jets in stationary ambient. Journal of hydro-environment research, 6(1), 9-28. doi: 10.1016/j.jher.2011.08.003
Lee, J.H. ve Cheung, V. (1990) Generalized Lagrangian model for buoyant jets in currents, Journal of Environmental Engineering, 116(6), 1085-1106. doi:10.1061/(ASCE)0733-9372(1990)116:6(1085)
Lykkebo Petersen, K., Heck, N., G. Reguero, B., Potts, D., Hovagimian, A. ve Paytan, A. (2019) Biological and physical effects of brine discharge from the Carlsbad Desalination plant and implications for future desalination plant constructions, Water, 11(2), 208. doi:10.3390/w11020208
Mohammadian, A., Kheirkhah Gildeh, H. ve Nistor, I. (2020) CFD modeling of effluent discharges: A review of past numerical studies, Water, 12(3), 856. doi:10.3390/w12030856
Moshiri-Tabrizi, I., Sarrafzadeh, M.-H. ve Sotudeh-Gharebagh, R. (2023) 2D-CFD Analysis of diffusers used to discharge brine into water bodies, Journal of Chemical & Petroleum Engineering, 57(2). doi:10.22059/jchpe.2023.321150.1347
Muller, J., Seil, G. ve Hubbert, G. (2011) Three modelling techniques used in Australia to model desalination plant brine dispersal in both the near-field and far-field, International Symposium on Marine Outfall Systems, 15-29.
Nemlioğlu, S. (2006) Yayıcılardan deşarj edilen yoğun atıksuların hidrodinamiğinin ve karışmasının deneysel olarak incelenmesi. TÜBİTAK Yurt Dışı Doktora Sonrası Araştırma Burs Programı Proje Sonuç Raporu, Proje No: 647-1793.
Nemlioğlu, S. (2003). Soğuk deşarjda birinci seyrelmenin incelenmesi. Doktora Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Oliver, C.J., Davidson, M. ve Nokes, R. (2013). Removing the boundary influence on negatively buoyant jets. Environmental Fluid Mechanics, 13, 625-648. doi: 10.1007/s10652-013-9278-3
Oliver, C., Davidson, M. ve Nokes, R. (2008) k-ε Predictions of the initial mixing of desalination discharges, Environmental Fluid Mechanics, 8, 617-625. doi:10.1007/s10652-008-9108-1
Öztürk, İ. (2011) Deniz Deşarjı Tesisleri Tasarımı, Su Vakfı Yayınları, İstanbul.
Palomar, P., ve Losada, I.J. (2011) Impacts of brine discharge on the marine environment. Modelling as a predictive tool, Desalination, trends and technologies. Intech. doi: 10.5772/14880
Pincince, A.B. ve List, E.J. (1973) Disposal of brine into an estuary, Journal of Water Pollution Control Federation, 45(11), 2335-2344. http://www.jstor.org/stable/25038038.
Roberts, P.J. (2018) Modeling brine disposal from the West Basin Ocean Water Desalination Project Final Report.
Roberts, P.J., Salas, H.J., Reiff, F.M., Libhaber, M., Labbe, A. ve Thomson, J.C. (2010) Marine Wastewater Outfalls and Treatment Systems, IWA Publishing, Londra.
Roberts, P.J., Ferrier, A. ve Daviero, G. (1997) Mixing in inclined dense jets, Journal of Hydraulic Engineering, 123(8), 693-699. doi:10.1061/(ASCE)0733-9429(1997)123:8(693)
Roberts, P.J. ve Toms, G. (1987) Inclined dense jets in flowing currents, Journal of Hydraulic Engineering, 113(3), 323-340. doi:10.1061/(ASCE)0733-9429(1987)113:3(323)
Robinson, D., Wood, M., Piggott, M. ve Gorman, G. (2016) CFD modelling of marine discharge mixing and dispersion, Journal of Applied Water Engineering and Research, 4(2), 152-162. doi:10.1080/23249676.2015.1105157
Saeidi Hosseini, S.A. (2024). Numerical and experimental study of multiport diffusers with non-uniform port orientation, Doktora Tezi, University of Ottawa, Faculty of Engineering, Ottawa.
Saeidi Hosseini, S.A., Mohammadian, A., Roberts, P.J. ve Abessi, O. (2022). Numerical study on the effect of port orientation on multiple inclined dense jets, Journal of Marine Science and Engineering, 10(5), 590. doi:10.3390/jmse10050590
Sayıl, M.C. (2024). Yoğun jet davranışının hesaplamalı akışkanlar dinamiği modelleri ile incelenmesi, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
Ungate, C.D., Harleman, D.R. ve Jirka, G.H. (1975) Stability and mixing of submerged turbulent jets at low Reynolds numbers, Energy Laboratory Report MIT-EL 75–014.
Ünsal Karakuş, E. (2018). Yoğun su deniz deşarjlarının yanal akımlarla etkileşimlerinin sayısal modelleme ile incelenmesi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Vafeiadou, P., Papakonstantis, I. ve Christodoulou, G. (2005) Numerical simulation of inclined negatively buoyant jets, The 9th international conference on environmental science and technology, September, (s. 1-3).
Versteeg, H. ve Malalasekera, W. (2007) An Introduction to Computational Fluid Dynamics, The Finite Volume Method (2 b.), Pearson Education Limited, Harlow, Essex.
Yan, X., Ghodoosipour, B. ve Mohammadian, A. (2020) Three-dimensional numerical study of multiple vertical buoyant jets in stationary ambient water, Journal of Hydraulic Engineering, 146(7), 04020049. doi:10.1061/(ASCE)HY.1943-7900.0001768
Yan, X. ve Mohammadian, A. (2019) Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports, Water, 11(10), 2077. doi:10.3390/w11102077
Yan, X., Mohammadian, A. ve Chen, X. (2019) Three-dimensional numerical simulations of buoyant jets discharged from a rosette-type multiport diffuser, Journal of Marine Science and Engineering, 7(11). doi:10.3390/jmse7110409
Yan, X. ve Mohammadian, A. (2017) Numerical modeling of vertical buoyant jets subjected to lateral confinement, Journal of Hydraulic Engineering, 143(7), 04017016. doi:10.1061/(ASCE)HY.1943-7900.0001307
Yılmaz, S. (2015). Evsel atıksu derin deniz deşarjlarında ördek gaga çek valf kullanımının birinci seyrelme üzerindeki etkilerinin incelenmesi, Yüksek Lisans Tezi, İ.Ü Fen Bilimleri Enstitüsü, İstanbul.
Zeitoun, M.A., Reid, R.O., McHilhenny, W.F. ve Mitchell, T.M. (1972) Model studies of outfall systems for desalination plants, Part III: Numerical simulations and design considerations, Research and Development Progress Rep. 804, Office of Saline Water, U.S Washington, DC: Dept. of Interior, Washington, D.C.
Zhang, S., Law, A. W.-K. ve Jiang, M. (2017) Large eddy simulations of 45 and 60 inclined dense jets with bottom impact, Journal of Hydro-Environment Research, 15, 54-66. doi:10.1016/j.jher.2017.02.001
A Review of Computational Fluid Dynamics (CFD) Modeling Studies On Dense Discharges
Appropriate design of marine outfalls is of utmost importance for the safe disposal of brine, which is the byproduct of the desalination process. A thorough analysis of brine jet behavior and mixing and dilution in ambient environments is required for the optimum design. For these analyses, Computational Fluid Dynamics (CFD) models have been increasingly used in recent years. In this paper, studies carried out on dense discharges using different CFD software and turbulence models are systematically reviewed. It was aimed to investigate the effects of differing discharge parameters on brine jet behavior and dilution and to evaluate and compare the performances of different CFD software and turbulence models. Results revealed that differing discharge parameters affect brine jet behavior and dilution significantly; different models performed differently under altering discharge and ambient water conditions, and the use of the most suitable model for optimum discharge is important.
Abessi, O. ve Roberts, P.J. (2018) Rosette diffusers for dense effluents in flowing currents, Journal of Hydraulic Engineering, 144(1), 06017024. doi:10.1061/(ASCE)HY.1943-7900.000140
Abessi, O. ve Roberts, P.J. (2017) Multiport diffusers for dense discharge in flowing ambient water, Journal of Hydraulic Engineering, 143(6), 04017003. doi:10.1061/(ASCE)HY.1943-7900.0001279
Abessi, O. ve Roberts, P.J. (2016) Dense jet discharges in shallow water, Journal of Hydraulic Engineering, 142(1), 04015033. doi:10.1061/(ASCE)HY.1943-7900.0001057
Abessi, O. ve Roberts, P.J. (2015) Effect of nozzle orientation on dense jets in stagnant environments, Journal of Hydraulic Engineering, 141(8), 06015009. doi:10.1061/(ASCE)HY.1943-7900.0001032
Abessi, O. (2018) Brine disposal and management—planning, design, and implementation. G. Gude (Dü.) içinde, Sustainable Desalination Handbook (s. 259-303). Elsevier. doi:10.1016/b978-0-12-809240-8.00007-1
Abou-Elhaggag, M.E., El-Gamal, M.H. ve Farouk, M.I. (2011) Experimental and numerical investigation of desalination plant outfalls in limited disposal areas, Journal of Environmental Protection, 2(6), 828-839. doi:10.4236/jep.2011.26094
Akbari, H. ve Ebrahimi, M.H. (2016) Near field mixing of multi-diffuser dense jets in shallow water condition and ambient currents, 15th National Hydraulic Conference, Iran. Qazvin.
Altuncu, F.F. (2004). Tasarım aşamasında uygun olmayan deşarj katsayısı kullanımının deniz deşarj tesisi yayıcı iç hidroliği üzerindeki etkileri, Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Amiri, N.S., Abessi, O. ve Roberts, P.J. (2024). Venturi nozzles for desalination brine discharges, Desalination, 573, 117193. doi: 10.1016/j.desal.2023.117193
Anılan, T. (2023). Deniz Deşarjı Hidroliği Lisansüstü Ders Notları, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
ANSYS CFX-Solver Modeling Guide. (2013). ANSYS, Inc.
ANSYS Fluent Theory Guide. (2011). ANSYS, Inc.
Ardalan, H. ve Vafaei, F. (2019) CFD and experimental study of 45° inclined thermal-saline reversible buoyant jets in stationary ambient, Environmental Processes, 6(1), 219-239. doi:/10.1007/s40710-019-00356-z
Baawain, M., Choudri, B.S., Ahmed, M. ve Purnama, A. (2015) An Overview: Desalination, Environmental and Marine Outfall Systems. Recent Progress in Desalination, Environmental and Marine Outfall Systems, 3–10. doi:10.1007/978-3-319-19123-2_1
Bashitialshaaer, R., Persson, K.M. ve Larson, M. (2015) New criteria for brine discharge outfalls from desalination plants. Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities: Innovations and Environmental Impacts (s. 451-467). içinde Springer. doi:10.1007/978-3-319-13203-7_19
Baum, M.J. ve Gibbes, B. (2020) Field-scale numerical modeling of a dense multiport diffuser outfall in crossflow, Journal of Hydraulic Engineering, 146(1), 05019006. doi:10.1061/(ASCE)HY.1943-7900.0001635
Baum, M.J., Albert, S., Grinham, A. ve Gibbes, B. (2019) Spatiotemporal influences of open-coastal forcing dynamics on a dense multiport diffuser outfall, Journal of Hydraulic Engineering, 145(10), 05019004. doi:10.1061/(ASCE)HY.1943-7900.0001622
Berkün, M. (2017) Atıksu Mühendisliği: Toplama, Arıtma, Uzaklaştırma ve Denize Deşarj Yapıları, Literatür Yayıncılık.
Berkün, M. (2006) Atık Su Arıtma ve Deniz Deşarjı Yapıları, Seçkin Yayıncılık, Ankara.
Bussoletti, J. (1994) CFD calibration and validation-The challenges of correlating computational model results with test data, 25th Plasmadynamics and Lasers Conference, 2542. doi:10.2514/6.1994-2542
Castro-Faccetti, C. (2020). Modelling dilution and transport processes from marine outfall discharges, Doktora Tezi. The University of Leeds, School of Civil Engineering, Leeds.
Castro-Faccetti, C., Borman, D., Sleigh, A., Khan, A. ve Eljaiek-Urzola, M. (2019) Three-Dimensional CFD Modelling of Mixing and Dispersion from Marine Outfall Discharges, In Proceedings of the 38th International Association for Hydro-Environment Engineering and Research (IAHR) World Congress. doi:10.3850/38WC092019-0467
Cipollina, A., Brucato, A., Grisafi, F. ve Nicosia, S. (2005) Bench-scale investigation of inclined dense jets, Journal of Hydraulic Engineering, 131(11), 1017-1022. doi:10.1061/(ASCE)0733-9429(2005)131:11(1017)
Danish, D. ve Murali, K. (2021) Performance of the single round nozzle of the marine outfall system for buoyant fluid at stable water in the unstratified water depth. Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019) (s. 157-170). Springer Singapore. doi:10.1007/978-981-15-8506-7_13
Darama, S. (2009). Yoğun atıksu deşarjının birinci seyrelmesinde görünür saçak modelinin uygulanması, Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Firoozabadi, B., Afshin, H. ve Aram, E. (2009) Three-dimensional modeling of density current in a straight channel, Journal of Hydraulic Engineering, 135(5), 393-402. doi:10.1061/(ASCE)HY.1943-7900.0000026
Hajdukiewicz, M., Geron, M. ve Keane, M.M. (2013) Formal calibration methodology for CFD models of naturally ventilated indoor environments. Building and Environment, 59, 290-302. doi:10.1016/j.buildenv.2012.08.027
Jiang, B., Law, A. W.-K. ve Lee, J. H.-W. (2014) Mixing of 30° and 45° inclined dense jets in shallow coastal waters, Journal of Hydraulic Engineering, 140(3), 241-253. doi:10.1061/(ASCE)HY.1943-7900.0000819
Jirka, G.H. (2008) Improved discharge configurations for brine effluents from desalination plants, Journal of Hydraulic Engineering, 134(1), 116-120. doi:10.1061/(ASCE)0733-9429(2008)134:1(116)
Jirka, G.H. (2006) Integral model for turbulent buoyant jets in unbounded stratified flows Part 2: Plane jet dynamics resulting from multiport diffuser jets, Environmental Fluid Mechanics, 6, 43-100. doi:10.1007/s10652-005-4656-0
Jirka, G.H. (2004) Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: Single round jet, Environmental Fluid Mechanics, 4(1), 1-56. doi:10.1023/A:1025583110842
Kaye, N. ve Linden, P. (2004) Coalescing axisymmetric turbulent plumes, Journal of Fluid Mechanics, 502, 41-63. doi:10.1017/S0022112003007250
Kheirkhah Gildeh, H., Mohammadian, A. ve Nistor, I. (2022) Vertical dense effluent discharge modelling in shallow waters. Water, 14(15), 2312. doi:10.3390/w14152312
Kheirkhah Gildeh, H., Mohammadian, A. ve Nistor, I. (2021) Inclined dense effluent discharge modelling in shallow waters, Environmental Fluid Mechanics, 21, 955-987. doi:10.1007/s10652-021-09805-6
Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I. ve Qiblawey, H. (2015) Numerical modeling of 30◦ and 45◦ inclined dense turbulent jets in stationary ambient, Environmental Fluid Mechanics, 15, 537-562. doi:10.1007/s10652-014-9372-1
Lai, C.C. ve Lee, J.H. (2012) Mixing of inclined dense jets in stationary ambient. Journal of hydro-environment research, 6(1), 9-28. doi: 10.1016/j.jher.2011.08.003
Lee, J.H. ve Cheung, V. (1990) Generalized Lagrangian model for buoyant jets in currents, Journal of Environmental Engineering, 116(6), 1085-1106. doi:10.1061/(ASCE)0733-9372(1990)116:6(1085)
Lykkebo Petersen, K., Heck, N., G. Reguero, B., Potts, D., Hovagimian, A. ve Paytan, A. (2019) Biological and physical effects of brine discharge from the Carlsbad Desalination plant and implications for future desalination plant constructions, Water, 11(2), 208. doi:10.3390/w11020208
Mohammadian, A., Kheirkhah Gildeh, H. ve Nistor, I. (2020) CFD modeling of effluent discharges: A review of past numerical studies, Water, 12(3), 856. doi:10.3390/w12030856
Moshiri-Tabrizi, I., Sarrafzadeh, M.-H. ve Sotudeh-Gharebagh, R. (2023) 2D-CFD Analysis of diffusers used to discharge brine into water bodies, Journal of Chemical & Petroleum Engineering, 57(2). doi:10.22059/jchpe.2023.321150.1347
Muller, J., Seil, G. ve Hubbert, G. (2011) Three modelling techniques used in Australia to model desalination plant brine dispersal in both the near-field and far-field, International Symposium on Marine Outfall Systems, 15-29.
Nemlioğlu, S. (2006) Yayıcılardan deşarj edilen yoğun atıksuların hidrodinamiğinin ve karışmasının deneysel olarak incelenmesi. TÜBİTAK Yurt Dışı Doktora Sonrası Araştırma Burs Programı Proje Sonuç Raporu, Proje No: 647-1793.
Nemlioğlu, S. (2003). Soğuk deşarjda birinci seyrelmenin incelenmesi. Doktora Tezi, İ.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Oliver, C.J., Davidson, M. ve Nokes, R. (2013). Removing the boundary influence on negatively buoyant jets. Environmental Fluid Mechanics, 13, 625-648. doi: 10.1007/s10652-013-9278-3
Oliver, C., Davidson, M. ve Nokes, R. (2008) k-ε Predictions of the initial mixing of desalination discharges, Environmental Fluid Mechanics, 8, 617-625. doi:10.1007/s10652-008-9108-1
Öztürk, İ. (2011) Deniz Deşarjı Tesisleri Tasarımı, Su Vakfı Yayınları, İstanbul.
Palomar, P., ve Losada, I.J. (2011) Impacts of brine discharge on the marine environment. Modelling as a predictive tool, Desalination, trends and technologies. Intech. doi: 10.5772/14880
Pincince, A.B. ve List, E.J. (1973) Disposal of brine into an estuary, Journal of Water Pollution Control Federation, 45(11), 2335-2344. http://www.jstor.org/stable/25038038.
Roberts, P.J. (2018) Modeling brine disposal from the West Basin Ocean Water Desalination Project Final Report.
Roberts, P.J., Salas, H.J., Reiff, F.M., Libhaber, M., Labbe, A. ve Thomson, J.C. (2010) Marine Wastewater Outfalls and Treatment Systems, IWA Publishing, Londra.
Roberts, P.J., Ferrier, A. ve Daviero, G. (1997) Mixing in inclined dense jets, Journal of Hydraulic Engineering, 123(8), 693-699. doi:10.1061/(ASCE)0733-9429(1997)123:8(693)
Roberts, P.J. ve Toms, G. (1987) Inclined dense jets in flowing currents, Journal of Hydraulic Engineering, 113(3), 323-340. doi:10.1061/(ASCE)0733-9429(1987)113:3(323)
Robinson, D., Wood, M., Piggott, M. ve Gorman, G. (2016) CFD modelling of marine discharge mixing and dispersion, Journal of Applied Water Engineering and Research, 4(2), 152-162. doi:10.1080/23249676.2015.1105157
Saeidi Hosseini, S.A. (2024). Numerical and experimental study of multiport diffusers with non-uniform port orientation, Doktora Tezi, University of Ottawa, Faculty of Engineering, Ottawa.
Saeidi Hosseini, S.A., Mohammadian, A., Roberts, P.J. ve Abessi, O. (2022). Numerical study on the effect of port orientation on multiple inclined dense jets, Journal of Marine Science and Engineering, 10(5), 590. doi:10.3390/jmse10050590
Sayıl, M.C. (2024). Yoğun jet davranışının hesaplamalı akışkanlar dinamiği modelleri ile incelenmesi, Yüksek Lisans Tezi, K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
Ungate, C.D., Harleman, D.R. ve Jirka, G.H. (1975) Stability and mixing of submerged turbulent jets at low Reynolds numbers, Energy Laboratory Report MIT-EL 75–014.
Ünsal Karakuş, E. (2018). Yoğun su deniz deşarjlarının yanal akımlarla etkileşimlerinin sayısal modelleme ile incelenmesi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
Vafeiadou, P., Papakonstantis, I. ve Christodoulou, G. (2005) Numerical simulation of inclined negatively buoyant jets, The 9th international conference on environmental science and technology, September, (s. 1-3).
Versteeg, H. ve Malalasekera, W. (2007) An Introduction to Computational Fluid Dynamics, The Finite Volume Method (2 b.), Pearson Education Limited, Harlow, Essex.
Yan, X., Ghodoosipour, B. ve Mohammadian, A. (2020) Three-dimensional numerical study of multiple vertical buoyant jets in stationary ambient water, Journal of Hydraulic Engineering, 146(7), 04020049. doi:10.1061/(ASCE)HY.1943-7900.0001768
Yan, X. ve Mohammadian, A. (2019) Numerical modeling of multiple inclined dense jets discharged from moderately spaced ports, Water, 11(10), 2077. doi:10.3390/w11102077
Yan, X., Mohammadian, A. ve Chen, X. (2019) Three-dimensional numerical simulations of buoyant jets discharged from a rosette-type multiport diffuser, Journal of Marine Science and Engineering, 7(11). doi:10.3390/jmse7110409
Yan, X. ve Mohammadian, A. (2017) Numerical modeling of vertical buoyant jets subjected to lateral confinement, Journal of Hydraulic Engineering, 143(7), 04017016. doi:10.1061/(ASCE)HY.1943-7900.0001307
Yılmaz, S. (2015). Evsel atıksu derin deniz deşarjlarında ördek gaga çek valf kullanımının birinci seyrelme üzerindeki etkilerinin incelenmesi, Yüksek Lisans Tezi, İ.Ü Fen Bilimleri Enstitüsü, İstanbul.
Zeitoun, M.A., Reid, R.O., McHilhenny, W.F. ve Mitchell, T.M. (1972) Model studies of outfall systems for desalination plants, Part III: Numerical simulations and design considerations, Research and Development Progress Rep. 804, Office of Saline Water, U.S Washington, DC: Dept. of Interior, Washington, D.C.
Zhang, S., Law, A. W.-K. ve Jiang, M. (2017) Large eddy simulations of 45 and 60 inclined dense jets with bottom impact, Journal of Hydro-Environment Research, 15, 54-66. doi:10.1016/j.jher.2017.02.001
Sayıl, M. C., & Anılan, T. (2024). YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 929-948. https://doi.org/10.17482/uumfd.1527596
AMA
Sayıl MC, Anılan T. YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ. UUJFE. December 2024;29(3):929-948. doi:10.17482/uumfd.1527596
Chicago
Sayıl, Mahmut Cenk, and Tuğçe Anılan. “YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 3 (December 2024): 929-48. https://doi.org/10.17482/uumfd.1527596.
EndNote
Sayıl MC, Anılan T (December 1, 2024) YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 929–948.
IEEE
M. C. Sayıl and T. Anılan, “YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ”, UUJFE, vol. 29, no. 3, pp. 929–948, 2024, doi: 10.17482/uumfd.1527596.
ISNAD
Sayıl, Mahmut Cenk - Anılan, Tuğçe. “YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (December 2024), 929-948. https://doi.org/10.17482/uumfd.1527596.
JAMA
Sayıl MC, Anılan T. YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ. UUJFE. 2024;29:929–948.
MLA
Sayıl, Mahmut Cenk and Tuğçe Anılan. “YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 3, 2024, pp. 929-48, doi:10.17482/uumfd.1527596.
Vancouver
Sayıl MC, Anılan T. YOĞUN DEŞARJ ÜZERİNE YAPILAN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD) MODELLEME ÇALIŞMALARININ İNCELENMESİ. UUJFE. 2024;29(3):929-48.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr