Research Article
BibTex RIS Cite

TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI

Year 2025, Volume: 30 Issue: 3, 941 - 956, 19.12.2025
https://doi.org/10.17482/uumfd.1726186

Abstract

Bu çalışma, Türkiye'nin Bursa ilinde yer alan Narlıdere Deresi'nde meydana gelebilecek taşkın olaylarının HEC-RAS yazılımı aracılığıyla modellenmesini amaçlamaktadır. Araştırmada, hidrolojik ve hidrolik analizlere dayalı nicel bir yöntem benimsenmiştir. Hidrolojik analiz kapsamında taşkın frekans analizleri gerçekleştirilmiş ve çeşitli tekerrür sürelerine ait taşkın debileri hesaplanmıştır. Hidrolik analiz ise Sayısal Yükseklik Modeli (DEM) ve Coğrafi Bilgi Sistemleri (CBS) destekli HEC-RAS yazılımı kullanılarak yapılmış, bir boyutlu (1D) taşkın yayılım senaryoları oluşturulmuştur. Elde edilen sonuçlar, düşük debilerde yaklaşık 1 metre, yüksek debilerde ise 5 metreyi aşan su seviyeleri ile yerleşim alanlarının önemli bir kısmının taşkın riski altında olduğunu ortaya koymaktadır. Çalışma bulguları, Narlıdere ve çevresindeki alanlarda taşkın riskini azaltmaya yönelik bütüncül bir taşkın yönetim planına duyulan ihtiyacı vurgulamaktadır. Nehir yatağı kapasitesinin artırılması, erken uyarı sistemlerinin kurulması ve yapısal ve yapısal olmayan önlemlerin entegre edilmesi önerilmektedir. Bu bağlamda, çalışma hem yerel afet riskinin azaltılmasına hem de benzer hidroklimatik özellikler taşıyan alanlar için örnek teşkil edecek bilimsel bir çerçeve sunmaktadır.

References

  • Aytekin, M., Serengil, Y., & İnan, M. (2025). A GIS based quick assessment method of flood vulnerability: Susurluk Basin case. European Journal of Forest Engineering, 11(1), 1–14. Doi:10.33904/ejfe.1417141
  • Bapalu, G. V., & Sinha, R. (2005). GIS in flood hazard mapping: A case study of Kosi River Basin, India. GIS@Development Weekly, 1, 1–3.
  • Basnet, K., Acharya, D., Bhandari, K. P., Lamichhane, S., & Sadadev, B. B. (2024). Floodplain mapping of an ungauged river: A case study on Seti River in Pokhara, Nepal. Himalayan Journal of Applied Science and Engineering, 4(2), 23–39. doi:10.3126/hijase.v4i2.62185
  • Canpolat, E., & Bozdoğan, M. (2024). Delibekirli Havzası'nın taşkın tekerrürünün hesaplanması ve HEC-RAS ile modellenmesi (Kırıkhan-Hatay). Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(1), 1–15. doi:10.21324/dacd.1387971
  • Chakraborty Shoumik, S., Ridoy, A. S., Kawsaruzzaman, ve Jany, M. R. (2025). The use of HEC-RAS in mapping the flood inundation area: A study on Surma River Basin, Bangladesh. World Journal of Advanced Engineering Technology and Sciences, 14(1), 78–88. doi:10.55938/wjaets.v14i1.2404
  • Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill, New York.
  • Demir, V., & Keskin, A. Ü. (2022). Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı örneği). Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi (UMAGD), 14(2), 663–678. doi:10.29137/umagd.1090447
  • Duan, M., Zhang, J., Liu, Z., ve Aekakkararungroj, A. (2009). Use of remote sensing and GIS for flood hazard mapping in Chiang Mai Province, northern Thailand. In Proceedings of the International Conference on Geospatial Solutions for Emergency Management and the 50th Anniversary of the Chinese Academy of Surveying and Mapping (pp. 14–16). Beijing, China.
  • England, J. F. Jr., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, W. O. Jr., Veilleux, A. G., Kiang, J. E., ve Mason, R. R. Jr. (2019). Guidelines for determining flood flow frequency — Bulletin 17C (USGS Techniques & Methods, Book 4, Chap. B5). Reston, VA: U.S. Geological Survey.
  • Fajar, M. Q., Rehananda, A., & Purnomo, S. E. (2024). Flood modeling for the Cisanggarung River in the Cilengkrang Village using the HEC-RAS software. Journal of World Science, 3(12), 1648–1662. doi:10.56782/jws.v3i12.544
  • Getahun, Y. S., ve Gebre, S. L. (2015). Flood hazard assessment and mapping of flood inundation area of the Awash River basin in Ethiopia using GIS and HEC-GeoRAS/HECRAS model. Journal of Civil & Environmental Engineering, 5. doi:10.4172/2165-784X.1000179
  • HEC. (2017). HEC-RAS River Analysis System: User’s Manual, Version 5.0. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering Center.
  • https://search.earthdata.nasa.gov, Erişim Tarihi: 24.06.2025, Konu: Uydu verilerinin aranması ve indirilmesi.
  • https://www.narliderekoyu.com.tr, Erişim Tarihi: 24.06.2025, Konu: Narlıdere Köyü Hakkında Genel Bilgiler.
  • Khosravi, K., Kazemzadeh-Zow, A., Kourgli, A. A., & Abolmaali, S. M. (2023). Simulation of floods under the influence of effective factors in hydraulic and hydrological models using HEC-RAS and MIKE 21. Natural Hazards, 117(1), 605–632. doi:10.1007/s11069-023-07041-7
  • Mirzaei, S., Sadoddin, A., Bahremand, A., Ownegh, M., ve Mostafazadeh, R.(2025) Directtangible costs in flood zones simulated using the HEC-RAS 2-D hydraulic model – the Arazkuseh River, Golestan Province, MMWS. doi10.22098/mmws.2024.14501.1410
  • Mukhopadhyay, S. (2010). A geo-environmental assessment of flood dynamics in lower Ajoy River inducing sand splay problem in eastern India. Ethiopian Journal of Environmental Studies and Management, 3, 96–110. doi:10.4314/ejesm.v3i2.59841
  • Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HECGeoRAS model for flood inundation mapping: The case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449–1460. doi:10.1007/s40808-022-01321-5
  • Oghly, A. L. R., ve Güngör, M. (2025). Denizli ili Serinhisar ilçe merkezi taşkın yayılım alanlarının coğrafi bilgi sistemleri ve HEC RAS paket programı ile modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. doi:10.5505/pajes.2025.44914
  • Ogras, S., & Onen, F. (2020). Flood analysis with HEC-RAS: A case study of Tigris River. Advances in Civil Engineering, 2020, Article ID 6131982. doi:10.1155/2020/6131982
  • Peng, A., & Liu, F. (2019). Flooding simulation due to Hurricane Florence in North Carolina with HEC-RAS. arXiv preprint arXiv:1911.09525. doi:arXiv:1911.09525
  • Popa, R., ve Popa, A. (2020). Using 1D HEC-RAS modeling and LiDAR data to improve flood hazard maps in the Jijia Floodplain. Water, 12(6), 1624. doi:10.3390/w12061624
  • Ridwan, K. S., Sari, S. N., & Hermawan, A. (2025). Flood modeling of Telomoyo Watershed in Kebumen using HEC-RAS for mapping flood risk zones. Jurnal Teknologi Terapan GTech, 9(2), 978–990. doi:10.70609/gtech.v9i2.6801
  • Samarasinghe, S. M. J. S., Nandalal, H. K., Weliwitiy, D. P., Fowze, J. S. M., Hazarika, M. K., & Samarakoon, L. (2010). Application of remote sensing and GIS for flood risk analysis: A case study at Kalu-Ganga River, Sri Lanka. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(8), 110–115.
  • Ucar, I., Kapcak, M., Sonmez, O., Dogan, E., Turan, B., Dal, M., Findik, S. B., Yilmaz, M., ve Sever, A. (2023). From hazard maps to action plans: Comprehensive flood risk mitigation in the Susurluk Basin. Water, 15(6), 860. https://doi.org/10.3390/w17060860
  • Zellou, B., & Rahali, H. (2017). Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions. Natural Hazards, 86(1), 1–29. doi:10.1007/s11069-016-2667-9

A One-Dimensional Hydraulic Modeling Approach for Flood Risk Management: Bursa Narlıdere Stream Case Study

Year 2025, Volume: 30 Issue: 3, 941 - 956, 19.12.2025
https://doi.org/10.17482/uumfd.1726186

Abstract

This study aims to model the flood events that may occur in Narlıdere Stream in Bursa, Turkey through HEC-RAS software. In the research, a quantitative method based on hydrological and hydraulic analysis is adopted. Within the scope of hydrological analysis, flood frequency analysis was performed and flood flows for various recurrence times were calculated. Hydraulic analysis was performed using Digital Elevation Model (DEM) and Geographic Information Systems (GIS) supported HEC-RAS software and one-dimensional (1D) flood propagation scenarios were created. The obtained results reveal that a significant portion of the settlements are under flood risk with water levels exceeding approximately 1 meter at low flows and 5 meters at high flows. The study findings emphasize the need for a holistic flood management plan to reduce flood risk in Narlıdere and surrounding areas. Increasing riverbed capacity, installing early warning systems and integrating structural and non-structural measures are recommended. In this context, the study provides a scientific framework for both local disaster risk reduction and a model for areas with similar hydroclimatic characteristics.

References

  • Aytekin, M., Serengil, Y., & İnan, M. (2025). A GIS based quick assessment method of flood vulnerability: Susurluk Basin case. European Journal of Forest Engineering, 11(1), 1–14. Doi:10.33904/ejfe.1417141
  • Bapalu, G. V., & Sinha, R. (2005). GIS in flood hazard mapping: A case study of Kosi River Basin, India. GIS@Development Weekly, 1, 1–3.
  • Basnet, K., Acharya, D., Bhandari, K. P., Lamichhane, S., & Sadadev, B. B. (2024). Floodplain mapping of an ungauged river: A case study on Seti River in Pokhara, Nepal. Himalayan Journal of Applied Science and Engineering, 4(2), 23–39. doi:10.3126/hijase.v4i2.62185
  • Canpolat, E., & Bozdoğan, M. (2024). Delibekirli Havzası'nın taşkın tekerrürünün hesaplanması ve HEC-RAS ile modellenmesi (Kırıkhan-Hatay). Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(1), 1–15. doi:10.21324/dacd.1387971
  • Chakraborty Shoumik, S., Ridoy, A. S., Kawsaruzzaman, ve Jany, M. R. (2025). The use of HEC-RAS in mapping the flood inundation area: A study on Surma River Basin, Bangladesh. World Journal of Advanced Engineering Technology and Sciences, 14(1), 78–88. doi:10.55938/wjaets.v14i1.2404
  • Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill, New York.
  • Demir, V., & Keskin, A. Ü. (2022). Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı örneği). Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi (UMAGD), 14(2), 663–678. doi:10.29137/umagd.1090447
  • Duan, M., Zhang, J., Liu, Z., ve Aekakkararungroj, A. (2009). Use of remote sensing and GIS for flood hazard mapping in Chiang Mai Province, northern Thailand. In Proceedings of the International Conference on Geospatial Solutions for Emergency Management and the 50th Anniversary of the Chinese Academy of Surveying and Mapping (pp. 14–16). Beijing, China.
  • England, J. F. Jr., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas, W. O. Jr., Veilleux, A. G., Kiang, J. E., ve Mason, R. R. Jr. (2019). Guidelines for determining flood flow frequency — Bulletin 17C (USGS Techniques & Methods, Book 4, Chap. B5). Reston, VA: U.S. Geological Survey.
  • Fajar, M. Q., Rehananda, A., & Purnomo, S. E. (2024). Flood modeling for the Cisanggarung River in the Cilengkrang Village using the HEC-RAS software. Journal of World Science, 3(12), 1648–1662. doi:10.56782/jws.v3i12.544
  • Getahun, Y. S., ve Gebre, S. L. (2015). Flood hazard assessment and mapping of flood inundation area of the Awash River basin in Ethiopia using GIS and HEC-GeoRAS/HECRAS model. Journal of Civil & Environmental Engineering, 5. doi:10.4172/2165-784X.1000179
  • HEC. (2017). HEC-RAS River Analysis System: User’s Manual, Version 5.0. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering Center.
  • https://search.earthdata.nasa.gov, Erişim Tarihi: 24.06.2025, Konu: Uydu verilerinin aranması ve indirilmesi.
  • https://www.narliderekoyu.com.tr, Erişim Tarihi: 24.06.2025, Konu: Narlıdere Köyü Hakkında Genel Bilgiler.
  • Khosravi, K., Kazemzadeh-Zow, A., Kourgli, A. A., & Abolmaali, S. M. (2023). Simulation of floods under the influence of effective factors in hydraulic and hydrological models using HEC-RAS and MIKE 21. Natural Hazards, 117(1), 605–632. doi:10.1007/s11069-023-07041-7
  • Mirzaei, S., Sadoddin, A., Bahremand, A., Ownegh, M., ve Mostafazadeh, R.(2025) Directtangible costs in flood zones simulated using the HEC-RAS 2-D hydraulic model – the Arazkuseh River, Golestan Province, MMWS. doi10.22098/mmws.2024.14501.1410
  • Mukhopadhyay, S. (2010). A geo-environmental assessment of flood dynamics in lower Ajoy River inducing sand splay problem in eastern India. Ethiopian Journal of Environmental Studies and Management, 3, 96–110. doi:10.4314/ejesm.v3i2.59841
  • Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HECGeoRAS model for flood inundation mapping: The case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449–1460. doi:10.1007/s40808-022-01321-5
  • Oghly, A. L. R., ve Güngör, M. (2025). Denizli ili Serinhisar ilçe merkezi taşkın yayılım alanlarının coğrafi bilgi sistemleri ve HEC RAS paket programı ile modellenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. doi:10.5505/pajes.2025.44914
  • Ogras, S., & Onen, F. (2020). Flood analysis with HEC-RAS: A case study of Tigris River. Advances in Civil Engineering, 2020, Article ID 6131982. doi:10.1155/2020/6131982
  • Peng, A., & Liu, F. (2019). Flooding simulation due to Hurricane Florence in North Carolina with HEC-RAS. arXiv preprint arXiv:1911.09525. doi:arXiv:1911.09525
  • Popa, R., ve Popa, A. (2020). Using 1D HEC-RAS modeling and LiDAR data to improve flood hazard maps in the Jijia Floodplain. Water, 12(6), 1624. doi:10.3390/w12061624
  • Ridwan, K. S., Sari, S. N., & Hermawan, A. (2025). Flood modeling of Telomoyo Watershed in Kebumen using HEC-RAS for mapping flood risk zones. Jurnal Teknologi Terapan GTech, 9(2), 978–990. doi:10.70609/gtech.v9i2.6801
  • Samarasinghe, S. M. J. S., Nandalal, H. K., Weliwitiy, D. P., Fowze, J. S. M., Hazarika, M. K., & Samarakoon, L. (2010). Application of remote sensing and GIS for flood risk analysis: A case study at Kalu-Ganga River, Sri Lanka. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(8), 110–115.
  • Ucar, I., Kapcak, M., Sonmez, O., Dogan, E., Turan, B., Dal, M., Findik, S. B., Yilmaz, M., ve Sever, A. (2023). From hazard maps to action plans: Comprehensive flood risk mitigation in the Susurluk Basin. Water, 15(6), 860. https://doi.org/10.3390/w17060860
  • Zellou, B., & Rahali, H. (2017). Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions. Natural Hazards, 86(1), 1–29. doi:10.1007/s11069-016-2667-9
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Halid Jafali 0009-0001-1212-5228

Ahmet Iyad Ceyhunlu 0000-0003-3192-6132

Gökmen Çeribaşı 0000-0003-3145-418X

Tahir Akgül 0000-0003-4826-9212

Submission Date June 24, 2025
Acceptance Date October 15, 2025
Early Pub Date December 11, 2025
Publication Date December 19, 2025
Published in Issue Year 2025 Volume: 30 Issue: 3

Cite

APA Jafali, H., Ceyhunlu, A. I., Çeribaşı, G., Akgül, T. (2025). TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 941-956. https://doi.org/10.17482/uumfd.1726186
AMA Jafali H, Ceyhunlu AI, Çeribaşı G, Akgül T. TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI. UUJFE. December 2025;30(3):941-956. doi:10.17482/uumfd.1726186
Chicago Jafali, Halid, Ahmet Iyad Ceyhunlu, Gökmen Çeribaşı, and Tahir Akgül. “TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 3 (December 2025): 941-56. https://doi.org/10.17482/uumfd.1726186.
EndNote Jafali H, Ceyhunlu AI, Çeribaşı G, Akgül T (December 1, 2025) TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 941–956.
IEEE H. Jafali, A. I. Ceyhunlu, G. Çeribaşı, and T. Akgül, “TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI”, UUJFE, vol. 30, no. 3, pp. 941–956, 2025, doi: 10.17482/uumfd.1726186.
ISNAD Jafali, Halid et al. “TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (December2025), 941-956. https://doi.org/10.17482/uumfd.1726186.
JAMA Jafali H, Ceyhunlu AI, Çeribaşı G, Akgül T. TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI. UUJFE. 2025;30:941–956.
MLA Jafali, Halid et al. “TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 3, 2025, pp. 941-56, doi:10.17482/uumfd.1726186.
Vancouver Jafali H, Ceyhunlu AI, Çeribaşı G, Akgül T. TAŞKIN RİSK YÖNETİMİ İÇİN TEK BOYUTLU HİDROLİK MODELLEME YAKLAŞIMI: BURSA NARLIDERE DERESİ ÖRNEK ÇALIŞMASI. UUJFE. 2025;30(3):941-56.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.