Technical Brief
BibTex RIS Cite

CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES

Year 2025, Volume: 30 Issue: 3, 1065 - 1072, 19.12.2025
https://doi.org/10.17482/uumfd.1742091

Abstract

The increasing interest in wet-spun filaments has also sparked enthusiasm for custom-designed wet spinning setups. Tailored laboratory systems are valuable both for exploring novel polymer compositions and for modifying the setup components in the future. In this study, a concise outline of current practices, trends, and developments in laboratory-type wet spinning technologies is provided. Also, a custom-designed laboratory-scale wet spinning setup is introduced in detail. The constructed setup combines the controllable syringe, traveller, and winding unit via a single digital interface. The modular needle holder of the setup provides air gap spinning and multiple injection angles. The speeds of both the traveller, which regulates filament winding, and the winding cylinder can be adjusted via the touchscreen monitor. Such an integrated, complex, and modular system enables precise control of process parameters. Also, it is possible to precisely examine the effects of process-related parameters on the filament properties. Moreover, multiple control systems with a single interface provide the ability to draw filaments under controlled tension. This system further offers an adaptable framework for new developments, such as data monitoring and module integration, offering considerable versatility and cost advantages in both research and production processes.

Project Number

2024GAP002

Thanks

This study was supported by Pamukkale University Scientific Research Projects Coordination Unit (PAU BAP). Project number: 2024GAP002

References

  • Chen, Z., Song, J., Xia, Y., Jiang, Y., Murillo, L. L., Tsigkou, O., Wang, T. and Li, Y. (2021). High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Materials Science and Engineering: C, 127, 112204. https://doi.org/10.1016/J.MSEC.2021.112204
  • Costantini, M., Testa, S., Fornetti, E., Fuoco, C., Sanchez Riera, C., Nie, M., Bernardini, S., Rainer, A., Baldi, J., Zoccali, C., Biagini, R., Castagnoli, L., Vitiello, L., Blaauw, B., Seliktar, D., Święszkowski, W., Garstecki, P., Takeuchi, S., Cesareni, G., Cannata, S. and Gargioli, C. (2021). Biofabricating murine and human myo‐substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 13(3). https://doi.org/10.15252/emmm.202012778
  • Ding, Q., Rasheed, A., Zhang, H., Ajmal, S., Dastgeer, G., Saidov, K., Ruzimuradov, O., Mamatkulov, S., He, W. and Wang, P. (2024). A Coaxial Triboelectric Fiber Sensor for Human Motion Recognition and Rehabilitation via Machine Learning. Nanoenergy Advances, 4(4), 355–366. https://doi.org/10.3390/nanoenergyadv4040022
  • Drew, E. N., Piras, C. C., Fitremann, J. and Smith, D. K. (2022). Wet-spinning multi-component low-molecular-weight gelators to print synergistic soft materials. Chemical Communications, 58(79), 11115–11118. https://doi.org/10.1039/D2CC04003D
  • FET. (2025). The FET-200 Series. https://www.fetuk.com/wet-spinning-systems// (Access date: 20.04.2025)
  • Hammes, N., Monteiro, J., Rocha Segundo, I., Felgueiras, H. P., Silva, M. M., Costa, M. F. M. and Carneiro, J. (2025). Development of Co-Axial Fibres Composed of CA (Mn 50,000) and PEGs (600 and 1000): Evaluation of the Influence of the Coagulation Bath. Applied Sciences, 15(6), 3028. https://doi.org/10.3390/app15063028
  • Kundrat, V., Matouskova, P. and Marova, I. (2019). Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials, 13(1), 86. https://doi.org/10.3390/ma13010086
  • Mirabedini, A., Foroughi, J., Romeo, T. and Wallace, G. G. (2015). Development and Characterization of Novel Hybrid Hydrogel Fibers. Macromolecular Materials and Engineering, 300(12), 1217–1225. https://doi.org/10.1002/mame.201500152
  • Mirabedini, A., Lu, Z., Mostafavian, S. and Foroughi, J. (2020). Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials, 11(1), 3. https://doi.org/10.3390/nano11010003
  • Mitropoulos, A. N., Kiesewetter, K. T., Horne, E., Butler, J., Loverde, J. R. and Wickiser, J. K. (2020). Uniform wet-Spinning Mechanically Automated (USMA) fiber device. HardwareX, 8, e00124. https://doi.org/10.1016/j.ohx.2020.e00124
  • Morgan, P. W. (1981). Brief History of Fibers from Synthetic Polymers. Journal of Macromolecular Science—Chemistry, 15(6), 1113–1131. https://doi.org/10.1080/00222338108066456
  • Rinoldi, C., Costantini, M., Kijeńska‐Gawrońska, E., Testa, S., Fornetti, E., Heljak, M., Ćwiklińska, M., Buda, R., Baldi, J., Cannata, S., Guzowski, J., Gargioli, C., Khademhosseini, A. and Swieszkowski, W. (2019). Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell‐Laden Hydrogel Yarns. Advanced Healthcare Materials, 8(7). https://doi.org/10.1002/adhm.201801218
  • Rocha, J. M., Sousa, R. P. C. L., Sousa, D., Tohidi, S. D., Ribeiro, A., Fangueiro, R. and Ferreira, D. P. (2025). Polycaprolactone-Based Fibrous Scaffolds Reinforced with Cellulose Nanocrystals for Anterior Cruciate Ligament Repair. Applied Sciences, 15(5), 2301. https://doi.org/10.3390/app15052301
  • Shen, H., Sun, T. and Zhou, J. (2023). Recent Progress in Regenerated Cellulose Fibers by Wet Spinning. Macromolecular Materials and Engineering, 308(10), 2300089. https://doi.org/10.1002/mame.202300089
  • Shirvan, A. R., Nouri, A. and Sutti, A. (2022). A Perspective on the Wet Spinning Process and Its Advancements in Biomedical Sciences. European Polymer Journal, 181, 111681. https://doi.org/10.1016/j.eurpolymj.2022.111681
  • Suzuki, S., Togo, A. and Iwata, T. (2022). Dry-jet wet spinning of β-1,3-glucan and α-1,3-glucan. Polymer Journal, 54(4), 493–501. https://doi.org/10.1038/s41428-021-00573-0
  • Tonndorf, R., Aibibu, D. and Cherif, C. (2021). Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. International Journal of Molecular Sciences, 22(17), 9561. https://doi.org/10.3390/ijms22179561
  • Var, C. and Palamutcu, S. (2024a). Man-Made Bio-based and Biodegradable Fibers for Textile Applications. In S. S. Muthu (Ed.), Sustainable Manufacturing Practices in the Textiles and Fashion Sector. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. (pp. 229–280). Springer, Cham. https://doi.org/10.1007/978-3-031-51362-6_10
  • Var, C. and Palamutcu, S. (2024b). Diverse Approaches in Wet-Spun Alginate Filament Production from the Textile Industry Perspective: From Process Optimization to Composite Filament Production. Polymers, 16(13), 1817. https://doi.org/10.3390/polym16131817
  • Wen, X., Vasquez, E. S. L. and Rivera, M. L. (2024, October). Exploring a Sofware Tool for Biofibers Design. UIST Adjunct ’24.
  • Woodings, C. R. (2006). A Brief History of Regenerated Cellulosic Fibres. https://web.archive.org/web/20120422133253/http://www.nonwoven.co.uk/reports/History%20of%20Cellulosics.html

Laboratuvar Tipi Yaş Çekim Teknolojisindeki Güncel Uygulamalar, Trendler ve Gelişmeler

Year 2025, Volume: 30 Issue: 3, 1065 - 1072, 19.12.2025
https://doi.org/10.17482/uumfd.1742091

Abstract

Yaş çekim teknolojisi ile üretilmiş filamentlere olan artan ilgi, özel olarak tasarlanmış yaş çekim düzeneklerine yönelik ilgiyi de beraberinde getirmiştir. Özel tasarım laboratuvar ölçekli düzenekler, hem yeni polimer sistemlerinin araştırılması hem de gelecekte düzenek bileşenlerinin modifiye edilebilmesi açısından oldukça önemlidir. Bu çalışmada, laboratuvar tipi yaş çekim teknolojisindeki mevcut uygulamalara, eğilimlere ve gelişmelere dair kısa bir genel bakış sunulmaktadır. Ayrıca, özel tasarım laboratuvar ölçekli bir yaş çekim düzeneği ayrıntılı olarak tanıtılmaktadır. Kurulan düzenek, tek bir dijital arayüz üzerinden kontrol edilebilir bir enjektör, gezdirici, ve sarım ünitesi ana bileşenlerinden oluşmaktadır. Modüler olarak tasarlanmış iğne tutucu, hem enjeksiyon mesafesinde hem de enjeksiyon açısında varyasyonlu üretim sağlayabilmektedir. Filament sarımını yöneten gezdirici ve sarım silindirinin hızları dokunmatik ekran monitörü aracılığıyla ayarlanabilmektedir. Bu tip bir entegre ve modüler sistem, proses parametrelerinin hassas bir şekilde kontrol edilmesine olanak sağlamaktadır. Ayrıca, prosesle ilişkili parametrelerin nihai filament özellikleri üzerindeki etkilerinin hassas bir şekilde incelenebilmesini de mümkün kılmaktadır. Ek olarak, tek bir arayüze sahip çoklu kontrol sistemi, kontrollü gerilim altında filament üretimini sağlamaktadır. Bu sistem, veri izleme ve modül entegrasyonu gibi yeni gelişmelere uyarlanabilir bir çerçeve sunarak, hem araştırma hem de üretim süreçlerinde önemli ölçüde esneklik ve maliyet avantajları sunmaktadır.

Project Number

2024GAP002

References

  • Chen, Z., Song, J., Xia, Y., Jiang, Y., Murillo, L. L., Tsigkou, O., Wang, T. and Li, Y. (2021). High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Materials Science and Engineering: C, 127, 112204. https://doi.org/10.1016/J.MSEC.2021.112204
  • Costantini, M., Testa, S., Fornetti, E., Fuoco, C., Sanchez Riera, C., Nie, M., Bernardini, S., Rainer, A., Baldi, J., Zoccali, C., Biagini, R., Castagnoli, L., Vitiello, L., Blaauw, B., Seliktar, D., Święszkowski, W., Garstecki, P., Takeuchi, S., Cesareni, G., Cannata, S. and Gargioli, C. (2021). Biofabricating murine and human myo‐substitutes for rapid volumetric muscle loss restoration. EMBO Molecular Medicine, 13(3). https://doi.org/10.15252/emmm.202012778
  • Ding, Q., Rasheed, A., Zhang, H., Ajmal, S., Dastgeer, G., Saidov, K., Ruzimuradov, O., Mamatkulov, S., He, W. and Wang, P. (2024). A Coaxial Triboelectric Fiber Sensor for Human Motion Recognition and Rehabilitation via Machine Learning. Nanoenergy Advances, 4(4), 355–366. https://doi.org/10.3390/nanoenergyadv4040022
  • Drew, E. N., Piras, C. C., Fitremann, J. and Smith, D. K. (2022). Wet-spinning multi-component low-molecular-weight gelators to print synergistic soft materials. Chemical Communications, 58(79), 11115–11118. https://doi.org/10.1039/D2CC04003D
  • FET. (2025). The FET-200 Series. https://www.fetuk.com/wet-spinning-systems// (Access date: 20.04.2025)
  • Hammes, N., Monteiro, J., Rocha Segundo, I., Felgueiras, H. P., Silva, M. M., Costa, M. F. M. and Carneiro, J. (2025). Development of Co-Axial Fibres Composed of CA (Mn 50,000) and PEGs (600 and 1000): Evaluation of the Influence of the Coagulation Bath. Applied Sciences, 15(6), 3028. https://doi.org/10.3390/app15063028
  • Kundrat, V., Matouskova, P. and Marova, I. (2019). Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials, 13(1), 86. https://doi.org/10.3390/ma13010086
  • Mirabedini, A., Foroughi, J., Romeo, T. and Wallace, G. G. (2015). Development and Characterization of Novel Hybrid Hydrogel Fibers. Macromolecular Materials and Engineering, 300(12), 1217–1225. https://doi.org/10.1002/mame.201500152
  • Mirabedini, A., Lu, Z., Mostafavian, S. and Foroughi, J. (2020). Triaxial Carbon Nanotube/Conducting Polymer Wet-Spun Fibers Supercapacitors for Wearable Electronics. Nanomaterials, 11(1), 3. https://doi.org/10.3390/nano11010003
  • Mitropoulos, A. N., Kiesewetter, K. T., Horne, E., Butler, J., Loverde, J. R. and Wickiser, J. K. (2020). Uniform wet-Spinning Mechanically Automated (USMA) fiber device. HardwareX, 8, e00124. https://doi.org/10.1016/j.ohx.2020.e00124
  • Morgan, P. W. (1981). Brief History of Fibers from Synthetic Polymers. Journal of Macromolecular Science—Chemistry, 15(6), 1113–1131. https://doi.org/10.1080/00222338108066456
  • Rinoldi, C., Costantini, M., Kijeńska‐Gawrońska, E., Testa, S., Fornetti, E., Heljak, M., Ćwiklińska, M., Buda, R., Baldi, J., Cannata, S., Guzowski, J., Gargioli, C., Khademhosseini, A. and Swieszkowski, W. (2019). Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell‐Laden Hydrogel Yarns. Advanced Healthcare Materials, 8(7). https://doi.org/10.1002/adhm.201801218
  • Rocha, J. M., Sousa, R. P. C. L., Sousa, D., Tohidi, S. D., Ribeiro, A., Fangueiro, R. and Ferreira, D. P. (2025). Polycaprolactone-Based Fibrous Scaffolds Reinforced with Cellulose Nanocrystals for Anterior Cruciate Ligament Repair. Applied Sciences, 15(5), 2301. https://doi.org/10.3390/app15052301
  • Shen, H., Sun, T. and Zhou, J. (2023). Recent Progress in Regenerated Cellulose Fibers by Wet Spinning. Macromolecular Materials and Engineering, 308(10), 2300089. https://doi.org/10.1002/mame.202300089
  • Shirvan, A. R., Nouri, A. and Sutti, A. (2022). A Perspective on the Wet Spinning Process and Its Advancements in Biomedical Sciences. European Polymer Journal, 181, 111681. https://doi.org/10.1016/j.eurpolymj.2022.111681
  • Suzuki, S., Togo, A. and Iwata, T. (2022). Dry-jet wet spinning of β-1,3-glucan and α-1,3-glucan. Polymer Journal, 54(4), 493–501. https://doi.org/10.1038/s41428-021-00573-0
  • Tonndorf, R., Aibibu, D. and Cherif, C. (2021). Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. International Journal of Molecular Sciences, 22(17), 9561. https://doi.org/10.3390/ijms22179561
  • Var, C. and Palamutcu, S. (2024a). Man-Made Bio-based and Biodegradable Fibers for Textile Applications. In S. S. Muthu (Ed.), Sustainable Manufacturing Practices in the Textiles and Fashion Sector. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. (pp. 229–280). Springer, Cham. https://doi.org/10.1007/978-3-031-51362-6_10
  • Var, C. and Palamutcu, S. (2024b). Diverse Approaches in Wet-Spun Alginate Filament Production from the Textile Industry Perspective: From Process Optimization to Composite Filament Production. Polymers, 16(13), 1817. https://doi.org/10.3390/polym16131817
  • Wen, X., Vasquez, E. S. L. and Rivera, M. L. (2024, October). Exploring a Sofware Tool for Biofibers Design. UIST Adjunct ’24.
  • Woodings, C. R. (2006). A Brief History of Regenerated Cellulosic Fibres. https://web.archive.org/web/20120422133253/http://www.nonwoven.co.uk/reports/History%20of%20Cellulosics.html
There are 21 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Technical Brief
Authors

Cansu Var 0000-0003-4760-1068

Barış Hasçelik 0000-0003-3450-7355

Sema Palamutcu 0000-0001-9069-5499

Project Number 2024GAP002
Submission Date July 14, 2025
Acceptance Date October 21, 2025
Early Pub Date December 11, 2025
Publication Date December 19, 2025
Published in Issue Year 2025 Volume: 30 Issue: 3

Cite

APA Var, C., Hasçelik, B., & Palamutcu, S. (2025). CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 1065-1072. https://doi.org/10.17482/uumfd.1742091
AMA Var C, Hasçelik B, Palamutcu S. CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES. UUJFE. December 2025;30(3):1065-1072. doi:10.17482/uumfd.1742091
Chicago Var, Cansu, Barış Hasçelik, and Sema Palamutcu. “CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 3 (December 2025): 1065-72. https://doi.org/10.17482/uumfd.1742091.
EndNote Var C, Hasçelik B, Palamutcu S (December 1, 2025) CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 1065–1072.
IEEE C. Var, B. Hasçelik, and S. Palamutcu, “CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES”, UUJFE, vol. 30, no. 3, pp. 1065–1072, 2025, doi: 10.17482/uumfd.1742091.
ISNAD Var, Cansu et al. “CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (December2025), 1065-1072. https://doi.org/10.17482/uumfd.1742091.
JAMA Var C, Hasçelik B, Palamutcu S. CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES. UUJFE. 2025;30:1065–1072.
MLA Var, Cansu et al. “CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 3, 2025, pp. 1065-72, doi:10.17482/uumfd.1742091.
Vancouver Var C, Hasçelik B, Palamutcu S. CURRENT PRACTICES, TRENDS, AND DEVELOPMENTS IN LABORATORY-TYPE WET SPINNING TECHNOLOGIES. UUJFE. 2025;30(3):1065-72.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.