Research Article
BibTex RIS Cite

3B Dinamik Yapı-Zemin Etkileşimi Modellemelerinde Ağ Tipinin Rolü

Year 2025, Volume: 30 Issue: 3, 663 - 676, 19.12.2025
https://doi.org/10.17482/uumfd.1756215

Abstract

Yapı-zemin etkileşimi problemi sayısal modellemenin gelişmesiyle beraber son yıllarda birçok araştırmaya olanak sağlamaktadır. Bu problemin en önemli adımlarından biri zemin davranış analizleridir. ZDA yapının yokluğunda zeminin deprem yükleri altında göstereceği tepkileri anlamak ve yorumlamak için tasarımcıya önemli veriler sunmaktadır. Bu çalışmada ağ tipinin dinamik yapı zemin etkileşimi üzerindeki etkisi 3-boyutlu sonlu elemanlar yöntemi aracılığıyla ZDA üzerinden araştırılmaktadır. Çalışmada 3 farklı ağ tipi (hexahedral, tetrahedral ve hybrid) kullanılarak oluşturulan modellerin yanal sınırlarına geçirgen sınırlar yerleştirilmiştir. Geliştirilen 3-boyutlu modeller aynı deprem etkisi altında yapılan 1-boyutlu model sonuçlarıyla karşılaştırılarak doğrulanmıştır. Analizlerde, zeminin doğrusal elastik davranış sergilediği varsayılmış ve tüm 1B ve 3B analizler bu varsayım temelinde gerçekleştirilmiştir. 3B modeller, zemin yüzeyi tepki spektrumu aracılığıyla 1-boyutlu sonuçları başarılı bir biçimde temsil etmektedir. Çalışma, doğru bir şekilde yapılandırılmış bir ağ yapısı kullanıldığında, zemin sisteminin dinamik tepkisinin eleman tipinden büyük ölçüde bağımsız olduğunu ortaya koymaktadır. Buna karşılık, otomatik oluşturulmuş düzensiz ağ yapıları hatalı davranışa yol açabilmektedir. Değerlendirilen ağ tipleri arasında, hibrit ağlar hesaplama verimliliği açısından en uygun ağ tipi olduğu anlaşılmaktadır.

References

  • Alsaleh, H., & Shahrour, I. (2009). Influence of plasticity on the seismic soil-micropiles-structure interaction. Soil Dynamics and Earthquake Engineering, 29(3), 574–578. doi:10.1016/j.soildyn.2008.04.008
  • Ashford, S. A., & Sitar, N. (2001). Effect of element size on the static finite element analysis of steep slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 25(14), 1361–1376. Doi:10.1002/NAG.184
  • Bolisetti, C., Whittaker, A. S., & Coleman, J. L. (2018). Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures. Soil Dynamics and Earthquake Engineering, 107, 218–233. Doi:10.1016/j.soildyn.2018.01.026
  • de Sanctis, L., Maiorano, R. M. S., & Aversa, S. (2010). A method for assessing kinematic bending moments at the pile head. Earthquake Engineering & Structural Dynamics, 39(10), 1133–1154. Doi:10.1002/eqe.996
  • Deb, P., & Pal, S. K. (2021). Structural and geotechnical aspects of piled raft foundation through numerical analysis. Marine Georesources & Geotechnology, 1–24. Doi:10.1080/1064119X.2021.1943083
  • Fatahi, B., Van Nguyen, Q., Xu, R., & Sun, W. J. (2018). Three-dimensional response of neighboring buildings sitting on pile foundations to seismic pounding. International Journal of Geomechanics, 18(4). Doi:10.1061/(ASCE)GM.1943-5622.0001093
  • Ghavidel, A., Mousavi, S. R., & Rashki, M. (2018). The Effect of FEM Mesh Density on the Failure Probability Analysis of Structures. KSCE Journal of Civil Engineering, 22(7), 2371–2383. Doi:10.1007/S12205-017-1437-5
  • Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Philips, C. A., & Park, D. (2024). DEEPSOIL 7.0, User Manual.
  • Kampitsis, A. E., Giannakos, S., Gerolymos, N., & Sapountzakis, E. J. (2015). Soil–pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering Structures, 99, 319–333. Doi:10.1016/j.engstruct.2015.05.004
  • Kim, Y., & Jeong, S. (2011). Analysis of soil resistance on laterally loaded piles based on 3D soil-pile interaction. Computers and Geotechnics, 38(2), 248–257. Doi:10.1016/j.compgeo.2010.12.001
  • Liu, Y., Wang, X., & Zhang, M. (2015). Lateral Vibration of Pile Groups Partially Embedded in Layered Saturated Soils. International Journal of Geomechanics, 15(4). Doi:10.1061/(ASCE)GM.1943-5622.0000406
  • Luo, C., Yang, X., Zhan, C., Jin, X., & Ding, Z. (2016). Nonlinear 3D finite element analysis of soil-pile-structure interaction system subjected to horizontal earthquake excitation. Soil Dynamics and Earthquake Engineering, 84, 145–156. Doi:10.1016/j.soildyn.2016.02.005
  • Lysmer, J., & Kuhlemayer, R. J. (1969). Finite dynamic model for infinite media. Journal of Engineering Mechanics Division - Proceedings of the American Society of Civil Engineers, 95(4), 859–878.
  • Lysmer, J. (1978). Analytical Procedures in Soil Dynamics. Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/EERC78/29.
  • Midas GTS NX. (2023). Online Manual. MIDAS Information Technology Co. MIDAS Information Technology Co.: MIDAS Information Technology Co.
  • Nateghi-A, F., & Rezaei-Tabrizi, A. (2013). Nonlinear dynamic response of tall buildings considering structure–soil–structure effects. The Structural Design of Tall and Special Buildings, 22(14), 1075–1082. Doi:10.1002/TAL.753
  • Nguyen, Q. Van, Fatahi, B., & Hokmabadi, A. S. (2016). The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction. Structural Engineering and Mechanics, 58(6), 1045–1075. Doi:10.12989/sem.2016.58.6.1045
  • Nguyen, Q. Van, Fatahi, B., & Hokmabadi, A. S. (2017). Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil-pile-structure interaction. International Journal of Geomechanics, 17(7), 1–22. Doi:10.1061/(ASCE)GM.1943-5622.0000869
  • Roth, S., Oudry, J., El-Rich, M., Shakourzadeh, H., & El, M. (2009). Influence of mesh density on a finite element model’s response under dynamic loading. Journal of Biological Physics and Chemistry, 9(4), 210–219. Doi:10.4024/39RO09C.jbpc.09.04
  • Sáez, E., Lopez-Caballero, F., & Modaressi-Farahmand-Razavi, A. (2013). Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Engineering Structures, 51, 166–177. Doi:10.1016/J.ENGSTRUCT.2013.01.020
  • Tabatabaiefar, S. H. R., Fatahi, B., & Samali, B. (2013). Seismic Behavior of Building Frames Considering Dynamic Soil-Structure Interaction. International Journal of Geomechanics, 13(4), 409–420. Doi:10.1061/(ASCE)GM.1943-5622.0000231
  • TBSC. (2018). Principles for the Design of Buildings Under the Impact of Earthquakes (In Turkish). Ministry of Interior, Disaster and Emergency Management Presidency, Ankara, Turkey.
  • Timurağaoğlu, M. Ö. (2024). Kinematic interaction analysis of individual soil-pile model within multi-block system. Soil Dynamics and Earthquake Engineering, 179, 108523. Doi:10.1016/j.soildyn.2024.108523
  • Timurağaoğlu, M. Ö., Fahjan, Y., & Doğangün, A. (2021). P-Y curves for laterally loaded single piles: Numerical validation. Marine Georesources & Geotechnology, 40(10), 1162-1170. Doi:10.1080/1064119X.2021.1972063
  • Wu, W., Ge, S., Yuan, Y., Ding, W., & Anastasopoulos, I. (2020). Seismic response of subway station in soft soil: Shaking table testing versus numerical analysis. Tunnelling and Underground Space Technology, 100, 103389. Doi:10.1016/j.tust.2020.103389
  • Zhang, L., & Liu, H. (2017). Seismic response of clay-pile-raft-superstructure systems subjected to far-field ground motions. Soil Dynamics and Earthquake Engineering, 101, 209–224. Doi:10.1016/j.soildyn.2017.08.004
  • Zhang, X., & Far, H. (2022). Seismic behaviour of high-rise frame-core tube structures considering dynamic soil–structure interaction. Bulletin of Earthquake Engineering, 20, 1–33. Doi:10.1007/S10518-022-01398-9

ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS

Year 2025, Volume: 30 Issue: 3, 663 - 676, 19.12.2025
https://doi.org/10.17482/uumfd.1756215

Abstract

With the advancement of numerical modeling techniques, the problem of soil–structure interaction (SSI) has become the subject of extensive research in recent years. One of the most critical stages of this problem is the site response analysis (SRA). SRA provides designers with valuable insights into the soil's expected seismic response in the superstructure's absence. The present work investigates the influence of mesh type on dynamic SSI through three-dimensional (3D) finite element-based SRA. Models were developed using three different mesh types—hexahedral, tetrahedral, and hybrid—with absorbing boundary conditions applied along the lateral edges. The 3D model results were verified by comparison with one-dimensional (1D) analyses subjected to the same ground motion. In the study, the soil was assumed to exhibit linear elastic behavior, and all 1D and 3D analyses were performed based on this assumption. The 3D models could accurately represent the 1D site response through ground surface response spectrum. The findings reveal that the dynamic response of the soil system is mainly independent of the element type provided that a properly structured and sufficiently refined mesh is employed. Conversely, auto-generated irregular meshes tend to produce inaccurate results. Among the mesh types evaluated, hybrid meshes offer the most favorable balance regarding computational efficiency.

References

  • Alsaleh, H., & Shahrour, I. (2009). Influence of plasticity on the seismic soil-micropiles-structure interaction. Soil Dynamics and Earthquake Engineering, 29(3), 574–578. doi:10.1016/j.soildyn.2008.04.008
  • Ashford, S. A., & Sitar, N. (2001). Effect of element size on the static finite element analysis of steep slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 25(14), 1361–1376. Doi:10.1002/NAG.184
  • Bolisetti, C., Whittaker, A. S., & Coleman, J. L. (2018). Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures. Soil Dynamics and Earthquake Engineering, 107, 218–233. Doi:10.1016/j.soildyn.2018.01.026
  • de Sanctis, L., Maiorano, R. M. S., & Aversa, S. (2010). A method for assessing kinematic bending moments at the pile head. Earthquake Engineering & Structural Dynamics, 39(10), 1133–1154. Doi:10.1002/eqe.996
  • Deb, P., & Pal, S. K. (2021). Structural and geotechnical aspects of piled raft foundation through numerical analysis. Marine Georesources & Geotechnology, 1–24. Doi:10.1080/1064119X.2021.1943083
  • Fatahi, B., Van Nguyen, Q., Xu, R., & Sun, W. J. (2018). Three-dimensional response of neighboring buildings sitting on pile foundations to seismic pounding. International Journal of Geomechanics, 18(4). Doi:10.1061/(ASCE)GM.1943-5622.0001093
  • Ghavidel, A., Mousavi, S. R., & Rashki, M. (2018). The Effect of FEM Mesh Density on the Failure Probability Analysis of Structures. KSCE Journal of Civil Engineering, 22(7), 2371–2383. Doi:10.1007/S12205-017-1437-5
  • Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Philips, C. A., & Park, D. (2024). DEEPSOIL 7.0, User Manual.
  • Kampitsis, A. E., Giannakos, S., Gerolymos, N., & Sapountzakis, E. J. (2015). Soil–pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering Structures, 99, 319–333. Doi:10.1016/j.engstruct.2015.05.004
  • Kim, Y., & Jeong, S. (2011). Analysis of soil resistance on laterally loaded piles based on 3D soil-pile interaction. Computers and Geotechnics, 38(2), 248–257. Doi:10.1016/j.compgeo.2010.12.001
  • Liu, Y., Wang, X., & Zhang, M. (2015). Lateral Vibration of Pile Groups Partially Embedded in Layered Saturated Soils. International Journal of Geomechanics, 15(4). Doi:10.1061/(ASCE)GM.1943-5622.0000406
  • Luo, C., Yang, X., Zhan, C., Jin, X., & Ding, Z. (2016). Nonlinear 3D finite element analysis of soil-pile-structure interaction system subjected to horizontal earthquake excitation. Soil Dynamics and Earthquake Engineering, 84, 145–156. Doi:10.1016/j.soildyn.2016.02.005
  • Lysmer, J., & Kuhlemayer, R. J. (1969). Finite dynamic model for infinite media. Journal of Engineering Mechanics Division - Proceedings of the American Society of Civil Engineers, 95(4), 859–878.
  • Lysmer, J. (1978). Analytical Procedures in Soil Dynamics. Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/EERC78/29.
  • Midas GTS NX. (2023). Online Manual. MIDAS Information Technology Co. MIDAS Information Technology Co.: MIDAS Information Technology Co.
  • Nateghi-A, F., & Rezaei-Tabrizi, A. (2013). Nonlinear dynamic response of tall buildings considering structure–soil–structure effects. The Structural Design of Tall and Special Buildings, 22(14), 1075–1082. Doi:10.1002/TAL.753
  • Nguyen, Q. Van, Fatahi, B., & Hokmabadi, A. S. (2016). The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction. Structural Engineering and Mechanics, 58(6), 1045–1075. Doi:10.12989/sem.2016.58.6.1045
  • Nguyen, Q. Van, Fatahi, B., & Hokmabadi, A. S. (2017). Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil-pile-structure interaction. International Journal of Geomechanics, 17(7), 1–22. Doi:10.1061/(ASCE)GM.1943-5622.0000869
  • Roth, S., Oudry, J., El-Rich, M., Shakourzadeh, H., & El, M. (2009). Influence of mesh density on a finite element model’s response under dynamic loading. Journal of Biological Physics and Chemistry, 9(4), 210–219. Doi:10.4024/39RO09C.jbpc.09.04
  • Sáez, E., Lopez-Caballero, F., & Modaressi-Farahmand-Razavi, A. (2013). Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Engineering Structures, 51, 166–177. Doi:10.1016/J.ENGSTRUCT.2013.01.020
  • Tabatabaiefar, S. H. R., Fatahi, B., & Samali, B. (2013). Seismic Behavior of Building Frames Considering Dynamic Soil-Structure Interaction. International Journal of Geomechanics, 13(4), 409–420. Doi:10.1061/(ASCE)GM.1943-5622.0000231
  • TBSC. (2018). Principles for the Design of Buildings Under the Impact of Earthquakes (In Turkish). Ministry of Interior, Disaster and Emergency Management Presidency, Ankara, Turkey.
  • Timurağaoğlu, M. Ö. (2024). Kinematic interaction analysis of individual soil-pile model within multi-block system. Soil Dynamics and Earthquake Engineering, 179, 108523. Doi:10.1016/j.soildyn.2024.108523
  • Timurağaoğlu, M. Ö., Fahjan, Y., & Doğangün, A. (2021). P-Y curves for laterally loaded single piles: Numerical validation. Marine Georesources & Geotechnology, 40(10), 1162-1170. Doi:10.1080/1064119X.2021.1972063
  • Wu, W., Ge, S., Yuan, Y., Ding, W., & Anastasopoulos, I. (2020). Seismic response of subway station in soft soil: Shaking table testing versus numerical analysis. Tunnelling and Underground Space Technology, 100, 103389. Doi:10.1016/j.tust.2020.103389
  • Zhang, L., & Liu, H. (2017). Seismic response of clay-pile-raft-superstructure systems subjected to far-field ground motions. Soil Dynamics and Earthquake Engineering, 101, 209–224. Doi:10.1016/j.soildyn.2017.08.004
  • Zhang, X., & Far, H. (2022). Seismic behaviour of high-rise frame-core tube structures considering dynamic soil–structure interaction. Bulletin of Earthquake Engineering, 20, 1–33. Doi:10.1007/S10518-022-01398-9
There are 27 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Mehmet Ömer Timurağaoğlu 0000-0002-6329-905X

Submission Date August 1, 2025
Acceptance Date October 31, 2025
Early Pub Date December 11, 2025
Publication Date December 19, 2025
Published in Issue Year 2025 Volume: 30 Issue: 3

Cite

APA Timurağaoğlu, M. Ö. (2025). ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 663-676. https://doi.org/10.17482/uumfd.1756215
AMA Timurağaoğlu MÖ. ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS. UUJFE. December 2025;30(3):663-676. doi:10.17482/uumfd.1756215
Chicago Timurağaoğlu, Mehmet Ömer. “ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, no. 3 (December 2025): 663-76. https://doi.org/10.17482/uumfd.1756215.
EndNote Timurağaoğlu MÖ (December 1, 2025) ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 663–676.
IEEE M. Ö. Timurağaoğlu, “ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS”, UUJFE, vol. 30, no. 3, pp. 663–676, 2025, doi: 10.17482/uumfd.1756215.
ISNAD Timurağaoğlu, Mehmet Ömer. “ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (December2025), 663-676. https://doi.org/10.17482/uumfd.1756215.
JAMA Timurağaoğlu MÖ. ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS. UUJFE. 2025;30:663–676.
MLA Timurağaoğlu, Mehmet Ömer. “ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 30, no. 3, 2025, pp. 663-76, doi:10.17482/uumfd.1756215.
Vancouver Timurağaoğlu MÖ. ROLE OF MESH TYPE IN 3D DYNAMIC SOIL–STRUCTURE INTERACTION SIMULATIONS. UUJFE. 2025;30(3):663-76.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.