BibTex RIS Cite

Numerical Investigation of Heat Transfer on the Surface of a Circular Cylinder in Cross-Flow

Year 2015, Volume: 20 Issue: 1, 131 - 141, 13.03.2015

Abstract

In the present study, numerical analysis of heat transfer from heated cylinder, located in
rectangular channel normal to the flow direction is studied. Finite volume based ANSYS-FLUENT 14 code
is used in the solution of governing equations. Three different turbulence models as Std. k-ε, RNG k-ε and
Realizable k-ε are used in computations for four different Reynolds numbers, Re= 4000, 8000, 16000, and
32000. It is found that numerical results obtained with Std. and RNG k-ε turbulence models are in good
agreement with experimental data for maximum value of local Nusselt number on the cylinder. As expected
that local Nusselt numbers increase with increasing Reynolds number for almost all points on cylinder.

References

  • Ayoub, A., Karamcheti, K. (1982) “An Experiment on the Flow Past a Finite Circular Cylinder at High Subcritical and Supercritical Reynolds Numbers”, Journal of Fluid Mechanics, 118, s1–26.
  • ANSYS (2012) ANSYS-FLUENT 14 User’ Guide.
  • Buyruk, E., Johnson, M.W., Owen, I. (1998) "Numerical and Experimental Study of Flow and Heat Transfer around a Tube in Cross-flow at Low Reynolds Number", Int. J. Heat & Fluid Flow, 19, s223-232.
  • Buyruk, E., Can, A., Fertelli, A. (2001) "Finite Element Solution of the Performance of a Heated Tube Influenced by Adjacent Heated Tubes" 12. International Conference on Thermal Eng. and Thermogrametry, Budapest.
  • Çelik, S., Karakuş, C., Akıllı, H., Şahin, B., (2011) “Sonlu-Silindir Üzerindeki Akış Yapısının Parçacık Görüntülemeli Hız Ölçüm Tekniği (PIV) ile İncelenmesi, Tesisat Mühendisliği Dergisi, 125, s33-51
  • Ghisalberti, L., Kondjoyan, A. (2002) “Complete map out of the heat transfer coefficient at the surface of two circular cylinders H/D=3.0 and 0.3 subjected to a cross-flow of air”, International Journal of Heat and Mass Transfer, 45, s2597–2609.
  • Giordano, R., Ianiro, A., Astarita, T., Carlomagno, G. M. (2011) “Flow Field and Heat Transfer on the Base Surface of a Finite Circular Cylinder In Crossflow”, Applied Thermal Engineering, 49, s79-88.
  • Güney, H.A. (2010) “Adyabatik Mikrokanallarda Akışın Fluent ile Modellenmesi”, Yüksek Lisans Tezi, Sakarya Üniversitesi. he Production of Turbulence near a Smooth Wall in a Turbulent Boundary Layer”, Journal of Fluid Mechanics, 50, s133–160.
  • İşman, M.K. (2011) “Tekli ve Çoklu Çarpan Hava Jetlerinde Taşınımla Isı ve Kütle Transferinin Deneysel ve Teorik olarak İncelenmesi”, Doktora Tezi, Uludağ Üniversitesi.
  • Kim, H.T., Kline, S.J., Reynolds, W.C. (1971) “The Production of Turbulence near a Smooth Wall in a Turbulent Boundary Layer”, Journal of Fluid Mechanics, 50, s133–160.
  • Kline S.J., Robinson S. K. (1990) “Quasi-coherent Structures in the Turbulent Boundarylayer”, 1. Status Report on a Community-wide Summary of the Data, Proceedings of the International Centre for Heat and Mass Transfer, 28, s200-217.
  • Launder, B. E., Spalding, D.B. (1972) “Lectures in Mathematical Models of Turbulence”, Academic Press, London.
  • Pulat, E., Isman, M. K., Etemoglu, A. B., Can, M. (2011) “Effect of Turbulence Models and Near-Wall Modeling Approaches on Numerical Results in Impingement Heat Transfer”, Numerical Heat Transfer, Part B, 60, s486–519. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, Cilt 20, Sayı 1, 2015
  • Sanitjai, S., Goldstein, R.J. (2004) “Forced convection heat transfer from a circular cylinder in crossflow to air and liquids” International Journal of Heat and Mass Transfer, 47, s4795–4805.
  • Zdrovistch, E., Fletcher, A.C, Behnio, M. (1995) "Numerical Laminar and Turbulent Fluid Flow and Heat Transfer Predictions in Tube Banks", Int. J. Num. Meth. Heat and Fluid Flow,5, s717-733.

Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi

Year 2015, Volume: 20 Issue: 1, 131 - 141, 13.03.2015

Abstract

Bu çalışmada, dikdörtgen kesitli bir kanalın içerisinde, akışa dik olarak yerleştirilmiş ve ısıtılmış
silindir üzerinden olan ısı transferi sayısal olarak incelenmiştir. Akışı idare eden Navier-Stokes
denklemlerinin çözümünde Sonlu Hacim Metodunu (SHM) kullanan ANSYS-FLUENT 14 paket programı
kullanılmıştır. Çalışmada, üç farklı türbülans modeli (Std. k-ε, RNG k-ε ve Realizable k-ε) ile dört farklı
giriş Reynolds sayısı (Re= 4000, 8000, 16000 ve 32000) için hesaplamalar yapılmıştır. Sonuç olarak, Std.
ve RNG k-ε türbülans modelleri ile elde edilen sayısal sonuçların deneysel değerlerle iyi uyum gösterdiği
tespit edilmiştir. Ayrıca beklenildiği üzere artan Reynolds sayısı ile silindir üzerindeki hemen hemen tüm
noktalarda Nusselt sayısı arttırmıştır.

References

  • Ayoub, A., Karamcheti, K. (1982) “An Experiment on the Flow Past a Finite Circular Cylinder at High Subcritical and Supercritical Reynolds Numbers”, Journal of Fluid Mechanics, 118, s1–26.
  • ANSYS (2012) ANSYS-FLUENT 14 User’ Guide.
  • Buyruk, E., Johnson, M.W., Owen, I. (1998) "Numerical and Experimental Study of Flow and Heat Transfer around a Tube in Cross-flow at Low Reynolds Number", Int. J. Heat & Fluid Flow, 19, s223-232.
  • Buyruk, E., Can, A., Fertelli, A. (2001) "Finite Element Solution of the Performance of a Heated Tube Influenced by Adjacent Heated Tubes" 12. International Conference on Thermal Eng. and Thermogrametry, Budapest.
  • Çelik, S., Karakuş, C., Akıllı, H., Şahin, B., (2011) “Sonlu-Silindir Üzerindeki Akış Yapısının Parçacık Görüntülemeli Hız Ölçüm Tekniği (PIV) ile İncelenmesi, Tesisat Mühendisliği Dergisi, 125, s33-51
  • Ghisalberti, L., Kondjoyan, A. (2002) “Complete map out of the heat transfer coefficient at the surface of two circular cylinders H/D=3.0 and 0.3 subjected to a cross-flow of air”, International Journal of Heat and Mass Transfer, 45, s2597–2609.
  • Giordano, R., Ianiro, A., Astarita, T., Carlomagno, G. M. (2011) “Flow Field and Heat Transfer on the Base Surface of a Finite Circular Cylinder In Crossflow”, Applied Thermal Engineering, 49, s79-88.
  • Güney, H.A. (2010) “Adyabatik Mikrokanallarda Akışın Fluent ile Modellenmesi”, Yüksek Lisans Tezi, Sakarya Üniversitesi. he Production of Turbulence near a Smooth Wall in a Turbulent Boundary Layer”, Journal of Fluid Mechanics, 50, s133–160.
  • İşman, M.K. (2011) “Tekli ve Çoklu Çarpan Hava Jetlerinde Taşınımla Isı ve Kütle Transferinin Deneysel ve Teorik olarak İncelenmesi”, Doktora Tezi, Uludağ Üniversitesi.
  • Kim, H.T., Kline, S.J., Reynolds, W.C. (1971) “The Production of Turbulence near a Smooth Wall in a Turbulent Boundary Layer”, Journal of Fluid Mechanics, 50, s133–160.
  • Kline S.J., Robinson S. K. (1990) “Quasi-coherent Structures in the Turbulent Boundarylayer”, 1. Status Report on a Community-wide Summary of the Data, Proceedings of the International Centre for Heat and Mass Transfer, 28, s200-217.
  • Launder, B. E., Spalding, D.B. (1972) “Lectures in Mathematical Models of Turbulence”, Academic Press, London.
  • Pulat, E., Isman, M. K., Etemoglu, A. B., Can, M. (2011) “Effect of Turbulence Models and Near-Wall Modeling Approaches on Numerical Results in Impingement Heat Transfer”, Numerical Heat Transfer, Part B, 60, s486–519. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, Cilt 20, Sayı 1, 2015
  • Sanitjai, S., Goldstein, R.J. (2004) “Forced convection heat transfer from a circular cylinder in crossflow to air and liquids” International Journal of Heat and Mass Transfer, 47, s4795–4805.
  • Zdrovistch, E., Fletcher, A.C, Behnio, M. (1995) "Numerical Laminar and Turbulent Fluid Flow and Heat Transfer Predictions in Tube Banks", Int. J. Num. Meth. Heat and Fluid Flow,5, s717-733.
There are 15 citations in total.

Details

Primary Language Turkish
Authors

Gizem Şencan This is me

Yunus Maral This is me

Mustafa İşman

Submission Date April 28, 2015
Publication Date March 13, 2015
Published in Issue Year 2015 Volume: 20 Issue: 1

Cite

APA Şencan, G., Maral, Y., & İşman, M. (2015). Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(1), 131-141. https://doi.org/10.17482/uujfe.84326
AMA Şencan G, Maral Y, İşman M. Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi. UUJFE. March 2015;20(1):131-141. doi:10.17482/uujfe.84326
Chicago Şencan, Gizem, Yunus Maral, and Mustafa İşman. “Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 20, no. 1 (March 2015): 131-41. https://doi.org/10.17482/uujfe.84326.
EndNote Şencan G, Maral Y, İşman M (March 1, 2015) Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 20 1 131–141.
IEEE G. Şencan, Y. Maral, and M. İşman, “Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi”, UUJFE, vol. 20, no. 1, pp. 131–141, 2015, doi: 10.17482/uujfe.84326.
ISNAD Şencan, Gizem et al. “Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 20/1 (March2015), 131-141. https://doi.org/10.17482/uujfe.84326.
JAMA Şencan G, Maral Y, İşman M. Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi. UUJFE. 2015;20:131–141.
MLA Şencan, Gizem et al. “Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 20, no. 1, 2015, pp. 131-4, doi:10.17482/uujfe.84326.
Vancouver Şencan G, Maral Y, İşman M. Dik Akışa Maruz Bir Silindir Üzerinden Olan Isı Transferinin Sayısal Olarak İncelenmesi. UUJFE. 2015;20(1):131-4.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.