Araştırma Makalesi
BibTex RIS Kaynak Göster

LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE

Yıl 2017, , 61 - 80, 08.12.2017
https://doi.org/10.17482/uumfd.325923

Öz

Bu çalışmada titreşim genliği ölçümü ile çalışan
Lorentz kuvveti tabanlı ve algılayıcısı tınlaşan MEMS yük hücresi olan bir
manyetometre sunulmaktadır. Manyetometre, tarak elektrotlara sahip Çift Bağlı
Diyapazon (ÇBD) bir tınlatıcı ile, uçlarından ve ortalarından birbirlerine
bağlanmış kirişlerden oluşan bir ızgara yapısından oluşmaktadır. Izgara yapısı,
üzerinden geçen akımla Lorentz kuvvetini oluştururken, elektriksel direncin ve
yapının sıcaklığının yükselmesini engellemektedir. Maksimum hassasiyet için
yapının genlik frekans tepkisinin eğiminin en büyük olduğu tahrik frekansı seçilmiştir.
Manyetometre standart SOI (Yalıtkan-Üzeri-Silisyum) mikro-işleme teknikleri
kullanılarak 35µm yapısal kalınlıkla üretilmiştir. Yapılan frekans tepkisi
testinde ÇBD yapısının tınlaşım frekansının 63812,1 Hz ve 0,2 mTorr'daki kalite
faktörünün de 5950 olduğu belirlenmiştir. Testler yapıya dik olarak oluşturulan
30mT manyetik alan altında, 100mA ızgara akımı ve 70mV tahrik genliği ile
yapılmıştır. Manyetometrenin orantı katsayısı 113.7 mV/T ve duyarlılığı  965 µT/Hz½ olarak ölçülmüştür.

Kaynakça

  • 1. Azgin, K. ve Valdevit, L. (2013) The effects of tine coupling and geometrical imperfections on the response of DETF resonators, Journal of Micromechanics and Microengineering, 23, 125011-(1-12). DOI:10.1088/0960-1317/23/12/125011
  • 2. Bahreyni, B. ve Shafai, C. (2005) A micromachined magnetometer with frequency modulation at the output, IEEE Sensors 2005, Irvine, 580-583. DOI: 10.1109/ICSENS.2005.1597765
  • 3. Blom, F. R., Bouwstra, S., Fluitman, J. H. J. ve Elwenspoek, M. (1989) Resonating silicon beam force sensor, Sensors and Actuators, 17, 513-519. DOI:10.1016/0250-6874(89)80039-3
  • 4. Brugger, S. ve Paul, O. (2008) Resonant magnetic microsensor with microT resolution, IEEE 21st International Conference on MEMS, Tucson, 944-947. DOI:10.1109/MEMSYS.2008.4443813
  • 5. Chang, S. C., Putty, M. W., Hicks, D. B., Li, C. H. ve Howe, R. T. (1990) Resonant-bridge two-axis microaccelerometer, Sensors and Actuators A: Physical, 21, 342-345. DOI:10.1016/0924-4247(90)85068-F
  • 6. Cheshmehdoost, A., Jones, B. E. ve O'Connor, B. (1991) Characteristics of a force transducer incorporating a mechanical DETF resonator, Sensors and Actuators A: Physical, 26, 307-312. DOI:10.1016/0924-4247(91)87009-R
  • 7. DiLella, D., Whitman, L. J., Colton, R. J., Kenny, T. W., Kaiser, W. J., Vote, E. C., Podosek, J. A. ve Miller, L. M. (2000) A micromachined magnetic-field sensor based on an electron tunneling displacement transducer, Sensors and Actuators A: Physical, 86, 8-20. DOI:10.1016/S0924-4247(00)00303-4
  • 8. Emmerich, H. ve Schofthaler, M. (2000) Magnetic field measurements with a novel surface micromachined magnetic-field sensor, Electron Devices, IEEE Transactions on, 47, 972-977. DOI:10.1109/16.841228
  • 9. Erdem, U. (1982) Force and weight measurement, Journal of Physics E: Scientific Instruments, 15, 857-872.
  • 10. Ettelt, D., Rey, P., Jourdan, G., Walther, A., Robert, P. and Delamare, J. (2013) 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs), Microelectromechanical Systems, Journal of, 23(2), 324-333. DOI:10.1109/JMEMS.2013.2273362
  • 11. Eyre, B., Pister, K. S. J., ve Kaiser, W. (1998) Resonant mechanical magnetic sensor in standard CMOS, Electron Device Letters, IEEE, 19, 496-498. DOI:10.1109/55.735758
  • 12. Herrera-May, A. L., Garcia-Ramirez, P. J., Aguilera-Cortes, L. A., Figueras, E., Martinez-Castillo, J., Manjarrez, E., Sauceda, A., Garcia-Gonzalez, L. ve Juarez-Aguirre, R. (2010) Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution, Sensors and Actuators A: Physical, 165, 399-409. DOI:10.1016/j.sna.2010.07.005
  • 13. Howe, R. T., Boser, B. E. ve Pisano, A. P. (1996) Polysilicon integrated microsystems: technologies and applications, Sensors and Actuators A: Physical, 56, 167-177. DOI:10.1016/0924-4247(96)01291-5
  • 14. Jha, C. M., Salvia, J., Chandorkar, S. A., Melamud, R., Kuhl, E. ve Kenny, T. W. (2008) Acceleration insensitive encapsulated silicon microresonator, Applied Physics Letters, 93, 234103-(1-3). DOI:10.1063/1.3036536
  • 15. Kadar, Z., Bossche, A., Sarro, P. M. ve Mollinger, J. R. (1998) Magnetic-field measurements using an integrated resonant magnetic-field sensor, Sensors and Actuators A: Physical, 70, 225-232. DOI:10.1016/S0924-4247(98)00143-5
  • 16. Keplinger, F., Kvasnica, S., Jachimowicz, A., Kohl, F., Steurer, J. ve Hauser, H. (2004) Lorentz force based magnetic field sensor with optical readout, Sensors and Actuators A: Physical, 110, 112-118. DOI:10.1016/j.sna.2003.10.025
  • 17. Kyynarainen, J., Saarilahti, J., Kattelus, H., Karkkainen, A., Meinander, T., Oja, A., Pekko, P., Seppa, H., Suhonen, M., Kuisma, H., Ruotsalainen, S. ve Tilli, M. (2008) A 3D micromechanical compass, Sensors and Actuators A: Physical, 142, 561-568. DOI:10.1016/j.sna.2007.08.025
  • 18. Lee, J. E. Y., Bahreyni, B. ve Seshia, A. A. (2008) An axial strain modulated double-ended tuning fork electrometer, Sensors and Actuators A: Physical, 148, 395-400. DOI:10.1016/j.sna.2008.09.010
  • 19. Mo, L., Rouf, V. T., Jaramillo, G. ve Horsley, D. A. (2013) MEMS Lorentz force magnetic sensor based on a balanced torsional resonator, Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 66-69. DOI:10.1109/Transducers.2013.6626702
  • 20. Myers, D. R., Cheng, K. B., Jamshidi, B., Azevedo, R. G., Senesky, D. G., Chen, L., Mehregany, M., Wijesundara, M. B. J. ve Pisano, A. P. (2009) Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments, Journal of Micro/Nanolithography, MEMS and MOEMS, 8, 021116-(1-7). DOI:10.1117/1.3143192
  • 21. Niarchos, D. (2003) Magnetic MEMS: key issues and some applications, Sensors and Actuators A: Physical, 109, 166-173. DOI:10.1016/S0924-4247(03)00179-1
  • 22. Pala, S., Çiçek, M. ve Azgın, K (2016) A Lorentz force MEMS magnetometer, 2016 IEEE Sensors Conference, Orlando, 1-3. DOI: 10.1109/ICSENS.2016.7808507
  • 23. Paros, J. M. (1973) Precision Digital Pressure Transducer, ISA Transactions, 12, 173-179.
  • 24. Rodriguez, B. J., Callahan, C., Kalinin S. V. and Proksch, R (2007) Dual-frequency resonance-tracking atomic force microscopy, Nanotechnology, 18, 475504-(1-6). DOI:10.1088/0957-4484/18/47/475504
  • 25. Roessig, T. A., Howe, R. T., Pisano, A. P. ve Smith, J. H. (1997) Surface-micromachined resonant accelerometer, International Conference on Solid State Sensors and Actuators, TRANSDUCERS '97, Chicago, 859-862. DOI:10.1109/SENSOR.1997.635237
  • 26. Seshia, A. A., Howe, R. T. ve Montague, S. (2002) An integrated microelectromechanical resonant output gyroscope, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, 722-726. DOI: 10.1109/MEMSYS.2002.984372
  • 27. Tang, W. C., Nguyen T.-C. H. ve Howe, R. T. (1989) Laterally Driven Polysilicon Resonant Microstructures, Sensors and Actuators, 20, 25-32. DOI:10.1109/MEMSYS.1989.77961
  • 28. Tilmans, H. A. C., Elwenspoek, M. ve Fluitman, J. H. J. (1992) Micro resonant force gauges, Sensors and Actuators A: Physical, 30, 35-53. DOI:10.1016/0924-4247(92)80194-8
  • 29. Torrents, A., Azgin, K., Godfrey, S. W., Topalli, E. S., Akin, T. ve Valdevit, L. (2010) MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design, Journal of Micromechanics and Microengineering, 20, 125004-(1-17). DOI:10.1088/0960-1317/20/12/125004
  • 30. Ueda, T., Kohsaka, F. ve Ogita, E. (1985) Precision force transducers using mechanical resonators, Measurement, 3, 89-94. DOI:10.1016/0263-2241(85)90010-7
  • 31. Van Mullem, C. J., Tilmans, H. A. C., Mouthaan, A. J. ve Fluitman, J. H. J. (1992) Electrical cross-talk in two-port resonators - the resonant silicon beam force sensor, Sensors and Actuators A: Physical, 31, 168-173. DOI:10.1016/0924-4247(92)80099-O
  • 32. Wickenden, D. K., Champion, J. L., Osiander, R., Givens, R. B., Lamb, J. L., Miragliotta, J. A., Oursler, D. A. ve Kistenmacher, T. J. (2003) Micromachined polysilicon resonating xylophone bar magnetometer, Acta Astronautica, 52, 421-425. DOI:10.1016/S0094-5765(02)00183-2
  • 33. Wojciechowski, K. E., Boser, B. E. ve Pisano, A. P. (2004) A MEMS resonant strain sensor operated in air, 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, 841-845. DOI: 10.1109/MEMS.2004.1290718
  • 34. Yang, H. H., Myung N. V., Yee, J., Park, D. Y., Yoo, B. Y., Schwartz, M., Nobe, K., ve Judy, J. W. (2002) Ferromagnetic micromechanical magnetometer, Sensors and Actuators A: Physical, 97 ve 98, 88-97. DOI:10.1016/S0924-4247(01)00809-3
  • 35. Yee, J. K., Yang, H. H. ve Judy, J. W. (2002) Dynamic response and shock resistance of ferromagnetic micromechanical magnetometers, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, Las Vegas, 308-311. DOI: 10.1109/MEMSYS.2002.984264
  • 36. Zulliger, H. R. (1983) Precise measurement of small forces, Sensors and Actuators, 4, 483-495. DOI:10.1016/0250-6874(83)85061-6

A Resonant MEMS Lorentz Force Based Magnetometer with Amplitude Detection

Yıl 2017, , 61 - 80, 08.12.2017
https://doi.org/10.17482/uumfd.325923

Öz

This study presents a Lorentz force magnetometer based
on vibration amplitude detection with a resonant MEMS load cell structure as a
sensor. Magnetometer is composed of a DETF (Double-Ended Tuning Fork) resonator
with comb type electrode and a grill structure formed by beams connected from
their centers end ends. The grill structure reduces electrical resistance and prevents
overheating while generating the Lorentz force. For maximum sensitivity, the
maxima of the slope of the magnitude response is chosen for excitation
frequency. The proposed sensor is fabricated using a standard SOI
micromachining processes with a device layer thickness of 35 μm. The resonance
frequency of the DETF is measured to be 63812,1 Hz, Q-factor of 5950 at around
0.2 mTorr ambient pressure. Tests are done for 30 mT magnetic field normal to
the resonator plane, with the grill current of 100 mA and excitation amplitude
of 70mV. The scale factor of the magnetometer is measured to be 113.7 mV/T with
a resolution of  965 µT/Hz½.

Kaynakça

  • 1. Azgin, K. ve Valdevit, L. (2013) The effects of tine coupling and geometrical imperfections on the response of DETF resonators, Journal of Micromechanics and Microengineering, 23, 125011-(1-12). DOI:10.1088/0960-1317/23/12/125011
  • 2. Bahreyni, B. ve Shafai, C. (2005) A micromachined magnetometer with frequency modulation at the output, IEEE Sensors 2005, Irvine, 580-583. DOI: 10.1109/ICSENS.2005.1597765
  • 3. Blom, F. R., Bouwstra, S., Fluitman, J. H. J. ve Elwenspoek, M. (1989) Resonating silicon beam force sensor, Sensors and Actuators, 17, 513-519. DOI:10.1016/0250-6874(89)80039-3
  • 4. Brugger, S. ve Paul, O. (2008) Resonant magnetic microsensor with microT resolution, IEEE 21st International Conference on MEMS, Tucson, 944-947. DOI:10.1109/MEMSYS.2008.4443813
  • 5. Chang, S. C., Putty, M. W., Hicks, D. B., Li, C. H. ve Howe, R. T. (1990) Resonant-bridge two-axis microaccelerometer, Sensors and Actuators A: Physical, 21, 342-345. DOI:10.1016/0924-4247(90)85068-F
  • 6. Cheshmehdoost, A., Jones, B. E. ve O'Connor, B. (1991) Characteristics of a force transducer incorporating a mechanical DETF resonator, Sensors and Actuators A: Physical, 26, 307-312. DOI:10.1016/0924-4247(91)87009-R
  • 7. DiLella, D., Whitman, L. J., Colton, R. J., Kenny, T. W., Kaiser, W. J., Vote, E. C., Podosek, J. A. ve Miller, L. M. (2000) A micromachined magnetic-field sensor based on an electron tunneling displacement transducer, Sensors and Actuators A: Physical, 86, 8-20. DOI:10.1016/S0924-4247(00)00303-4
  • 8. Emmerich, H. ve Schofthaler, M. (2000) Magnetic field measurements with a novel surface micromachined magnetic-field sensor, Electron Devices, IEEE Transactions on, 47, 972-977. DOI:10.1109/16.841228
  • 9. Erdem, U. (1982) Force and weight measurement, Journal of Physics E: Scientific Instruments, 15, 857-872.
  • 10. Ettelt, D., Rey, P., Jourdan, G., Walther, A., Robert, P. and Delamare, J. (2013) 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs), Microelectromechanical Systems, Journal of, 23(2), 324-333. DOI:10.1109/JMEMS.2013.2273362
  • 11. Eyre, B., Pister, K. S. J., ve Kaiser, W. (1998) Resonant mechanical magnetic sensor in standard CMOS, Electron Device Letters, IEEE, 19, 496-498. DOI:10.1109/55.735758
  • 12. Herrera-May, A. L., Garcia-Ramirez, P. J., Aguilera-Cortes, L. A., Figueras, E., Martinez-Castillo, J., Manjarrez, E., Sauceda, A., Garcia-Gonzalez, L. ve Juarez-Aguirre, R. (2010) Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution, Sensors and Actuators A: Physical, 165, 399-409. DOI:10.1016/j.sna.2010.07.005
  • 13. Howe, R. T., Boser, B. E. ve Pisano, A. P. (1996) Polysilicon integrated microsystems: technologies and applications, Sensors and Actuators A: Physical, 56, 167-177. DOI:10.1016/0924-4247(96)01291-5
  • 14. Jha, C. M., Salvia, J., Chandorkar, S. A., Melamud, R., Kuhl, E. ve Kenny, T. W. (2008) Acceleration insensitive encapsulated silicon microresonator, Applied Physics Letters, 93, 234103-(1-3). DOI:10.1063/1.3036536
  • 15. Kadar, Z., Bossche, A., Sarro, P. M. ve Mollinger, J. R. (1998) Magnetic-field measurements using an integrated resonant magnetic-field sensor, Sensors and Actuators A: Physical, 70, 225-232. DOI:10.1016/S0924-4247(98)00143-5
  • 16. Keplinger, F., Kvasnica, S., Jachimowicz, A., Kohl, F., Steurer, J. ve Hauser, H. (2004) Lorentz force based magnetic field sensor with optical readout, Sensors and Actuators A: Physical, 110, 112-118. DOI:10.1016/j.sna.2003.10.025
  • 17. Kyynarainen, J., Saarilahti, J., Kattelus, H., Karkkainen, A., Meinander, T., Oja, A., Pekko, P., Seppa, H., Suhonen, M., Kuisma, H., Ruotsalainen, S. ve Tilli, M. (2008) A 3D micromechanical compass, Sensors and Actuators A: Physical, 142, 561-568. DOI:10.1016/j.sna.2007.08.025
  • 18. Lee, J. E. Y., Bahreyni, B. ve Seshia, A. A. (2008) An axial strain modulated double-ended tuning fork electrometer, Sensors and Actuators A: Physical, 148, 395-400. DOI:10.1016/j.sna.2008.09.010
  • 19. Mo, L., Rouf, V. T., Jaramillo, G. ve Horsley, D. A. (2013) MEMS Lorentz force magnetic sensor based on a balanced torsional resonator, Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 66-69. DOI:10.1109/Transducers.2013.6626702
  • 20. Myers, D. R., Cheng, K. B., Jamshidi, B., Azevedo, R. G., Senesky, D. G., Chen, L., Mehregany, M., Wijesundara, M. B. J. ve Pisano, A. P. (2009) Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments, Journal of Micro/Nanolithography, MEMS and MOEMS, 8, 021116-(1-7). DOI:10.1117/1.3143192
  • 21. Niarchos, D. (2003) Magnetic MEMS: key issues and some applications, Sensors and Actuators A: Physical, 109, 166-173. DOI:10.1016/S0924-4247(03)00179-1
  • 22. Pala, S., Çiçek, M. ve Azgın, K (2016) A Lorentz force MEMS magnetometer, 2016 IEEE Sensors Conference, Orlando, 1-3. DOI: 10.1109/ICSENS.2016.7808507
  • 23. Paros, J. M. (1973) Precision Digital Pressure Transducer, ISA Transactions, 12, 173-179.
  • 24. Rodriguez, B. J., Callahan, C., Kalinin S. V. and Proksch, R (2007) Dual-frequency resonance-tracking atomic force microscopy, Nanotechnology, 18, 475504-(1-6). DOI:10.1088/0957-4484/18/47/475504
  • 25. Roessig, T. A., Howe, R. T., Pisano, A. P. ve Smith, J. H. (1997) Surface-micromachined resonant accelerometer, International Conference on Solid State Sensors and Actuators, TRANSDUCERS '97, Chicago, 859-862. DOI:10.1109/SENSOR.1997.635237
  • 26. Seshia, A. A., Howe, R. T. ve Montague, S. (2002) An integrated microelectromechanical resonant output gyroscope, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, 722-726. DOI: 10.1109/MEMSYS.2002.984372
  • 27. Tang, W. C., Nguyen T.-C. H. ve Howe, R. T. (1989) Laterally Driven Polysilicon Resonant Microstructures, Sensors and Actuators, 20, 25-32. DOI:10.1109/MEMSYS.1989.77961
  • 28. Tilmans, H. A. C., Elwenspoek, M. ve Fluitman, J. H. J. (1992) Micro resonant force gauges, Sensors and Actuators A: Physical, 30, 35-53. DOI:10.1016/0924-4247(92)80194-8
  • 29. Torrents, A., Azgin, K., Godfrey, S. W., Topalli, E. S., Akin, T. ve Valdevit, L. (2010) MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design, Journal of Micromechanics and Microengineering, 20, 125004-(1-17). DOI:10.1088/0960-1317/20/12/125004
  • 30. Ueda, T., Kohsaka, F. ve Ogita, E. (1985) Precision force transducers using mechanical resonators, Measurement, 3, 89-94. DOI:10.1016/0263-2241(85)90010-7
  • 31. Van Mullem, C. J., Tilmans, H. A. C., Mouthaan, A. J. ve Fluitman, J. H. J. (1992) Electrical cross-talk in two-port resonators - the resonant silicon beam force sensor, Sensors and Actuators A: Physical, 31, 168-173. DOI:10.1016/0924-4247(92)80099-O
  • 32. Wickenden, D. K., Champion, J. L., Osiander, R., Givens, R. B., Lamb, J. L., Miragliotta, J. A., Oursler, D. A. ve Kistenmacher, T. J. (2003) Micromachined polysilicon resonating xylophone bar magnetometer, Acta Astronautica, 52, 421-425. DOI:10.1016/S0094-5765(02)00183-2
  • 33. Wojciechowski, K. E., Boser, B. E. ve Pisano, A. P. (2004) A MEMS resonant strain sensor operated in air, 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, 841-845. DOI: 10.1109/MEMS.2004.1290718
  • 34. Yang, H. H., Myung N. V., Yee, J., Park, D. Y., Yoo, B. Y., Schwartz, M., Nobe, K., ve Judy, J. W. (2002) Ferromagnetic micromechanical magnetometer, Sensors and Actuators A: Physical, 97 ve 98, 88-97. DOI:10.1016/S0924-4247(01)00809-3
  • 35. Yee, J. K., Yang, H. H. ve Judy, J. W. (2002) Dynamic response and shock resistance of ferromagnetic micromechanical magnetometers, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, Las Vegas, 308-311. DOI: 10.1109/MEMSYS.2002.984264
  • 36. Zulliger, H. R. (1983) Precise measurement of small forces, Sensors and Actuators, 4, 483-495. DOI:10.1016/0250-6874(83)85061-6
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Kıvanç Azgın 0000-0002-1778-963X

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 4 Temmuz 2017
Kabul Tarihi 22 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Azgın, K. (2017). LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 61-80. https://doi.org/10.17482/uumfd.325923
AMA Azgın K. LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE. UUJFE. Aralık 2017;22(3):61-80. doi:10.17482/uumfd.325923
Chicago Azgın, Kıvanç. “LORENTZ KUVVETİ TABANLI, TINLAYAN Ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 61-80. https://doi.org/10.17482/uumfd.325923.
EndNote Azgın K (01 Aralık 2017) LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 61–80.
IEEE K. Azgın, “LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE”, UUJFE, c. 22, sy. 3, ss. 61–80, 2017, doi: 10.17482/uumfd.325923.
ISNAD Azgın, Kıvanç. “LORENTZ KUVVETİ TABANLI, TINLAYAN Ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 61-80. https://doi.org/10.17482/uumfd.325923.
JAMA Azgın K. LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE. UUJFE. 2017;22:61–80.
MLA Azgın, Kıvanç. “LORENTZ KUVVETİ TABANLI, TINLAYAN Ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 61-80, doi:10.17482/uumfd.325923.
Vancouver Azgın K. LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE. UUJFE. 2017;22(3):61-80.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr