Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Void Fraction by Image Processing

Yıl 2017, , 97 - 114, 27.12.2017
https://doi.org/10.17482/uumfd.371869

Öz

Void fraction is one of the key parameters for
defining the characteristics of a two phase flow. However, determination of
void fraction is not easy due to changing conditions of flow and the type of
fluid. In literature, there are plenty of works on determination of void
fraction in two-phase flow in a pipe or channel which uses psychical parameters
and properties of the system, flow and fluid. Since there are plenty number of
correlations for various flow types, an experimental method has been suggested
to determine the void fraction according to flow type without using any
physical parameter of the flow and fluid. Image visualization methods have been
applied to two-phase flow of refrigerant R600a in a circular tube. The images
from high speed photography have been processed using a software developed with
MATLAB Image Processing Toolbox.  The
results were also compared with the well-known correlations.

Kaynakça

  • Armand A.A. and Treschev, G.G. (1946) The Resistance During the Movement of a Two-phase System in Horizontal Pipes, IzvestiaVse Teplotekh. Inst.,1, 16–23.
  • Baroczy C.J., (1965) Correlation of liquid fraction in two-phase flow with application to liquid metals, Chemical Engineering Progress Symposium Series, 61 (57), 179–191.
  • Bowers, C. D. and Hrnjak, P. S. (2010) Determination of Void Fraction in Separated Two-Phase Flows Using Optical Techniques, International Refrigeration and Air Conditioning Conference, Paper 1083. http://docs.lib.purdue.edu/iracc/1083
  • Cavallini, A., El-Hajal, J. and Thome, J. R. (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern, part 2: new heat transfer model based on flow regimes, International Journal of Heat and Mass Transfer, 46, 3349-3363. doi:10.1016/S0017-9310(03)00139-X, doi:10.1016/S0017-9310(03)00140-6
  • El-Hajal J. and Fauske H. (1961) Critical two-phase, steam-water flows, Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, CA, 79–89.
  • Godbole, P. V., Tang, C. C. and Ghajar, A. J. (2011) Comparison of Void Fraction Correlations for Different Flow Patterns in Upward Vertical Two-Phase Flow, Heat Transfer Engineering, 32, 843-860. doi:10.1080/01457632.2011.548285
  • Hibiki, T. and Mishima, K. (1996) Feasibility of high frame-rate neutron radiography by using a steady thermal neutron beam with 106 n/(cm2 s) flux, Nuclear Instruments and Methods in Physics Research, A369, 186-194. doi:10.1016/0168-9002(95)00795-4
  • Hibiki, T., Mishima, K. and Nishihara, H. (1997) Measurement of radial void fraction distribution of two-phase flow in a metallic round tube using neutrons as microscopic probes, Nuclear Instruments and Methods in Physics Research, A399, 432-438. doi:10.1016/S0168-9002(97)00941-8
  • Kariyasaki, A., Fukano, T., Ousaka, A. and Kagawa, M. (1991) Characteristics of time-varying void fraction in isothermal air-water concurrent flow in a horizontal capillary tube, Trans. JSME, 57, 4036-4043
  • Kawahara A., Kawaji, M., Chung, P.M.Y., Sadatomi, M. and Okayama K. (2005) Effects of channel diameter and liquid properties on void fraction in adiabatic two-phase flow through microchannels, Heat Transfer Engineering, 26, 13–19. doi:10.1080/01457630590907158
  • Koyama S., Lee, J. and Yonemoto, R. (2004) An investigation on void fraction of vapor-liquid two-phase flow for smooth and microfin tubes with R134a at adiabatic condition, International Journal of Multiphase Flow, 30, 291-310. doi:10.1016/j.ijmultiphaseflow.2003.10.009
  • Lockhart, R.W. and Martinelli R.C. (1949) Proposed correlation of data for isothermal twophase, two-component flow in pipes, Chemical Engineering Progress, 45, 39–48. http://www.ripublication.com/ijaer17/ijaerv12n7_23.pdf
  • Mishima, K. and Hibiki, T. (1996), Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. of Multiphase Flow, 22, 701-703. doi:10.1016/0301-9322(96)00010-9
  • Mishima, K., Hibiki, T. and Nishihara, H. (1997) Visualization and measurement of two-phase flow by using neutron radiography, Nuclear Engineering and Design, 175, 25-35. doi:10.1016/S0029-5493(97)00159-3
  • Premoli, A., Francesco, D. and Prima, A. (1971) An empirical correlation for evaluating twophase mixture density under adiabatic conditions, European Two-Phase Flow Group Meeting, Milan, Italy.
  • Saisorn, S. and Wongwises, S. (2009) An experimental investigation of two-phase air–water flow through a horizontal circular micro-channel, Experimental Thermal and Fluid Science, 33, 306-315. doi:10.1016/j.expthermflusci.2008.09.009
  • Smith S. J., Shao L. and Riffat S. B. (2001) Pressure drop of HFC refrigerants inside evaporator and condenser coils as determined by CFD, Applied Energy, 70, 169-178. doi:10.1016/S0306-2619(01)00022-8
  • Tandon T. N., Varma H. K. and Gupta C. P. (1985) A void fraction model for annular two-phase flow, International Journal of Heat Mass Transfer, 28, 191-198. doi:10.1016/0017-9310(85)90021-3
  • Thom J.R.S. (1964) Prediction of pressure drop during forced circulation boiling of water, International Journal of Heat and Mass Transfer, 7, 709–724. doi:10.1016/0017-9310(64)90002-X
  • Thome J.R (2004-2006) Engineering Data Book III, Wolverine Tube Inc.
  • Thome J.R. (2005) Condensation in plain horizontal tubes: Recent advances in modelling of heat transfer to pure fluids and mixtures, Journal of the Braz. Soc. of Mech. Sci.&Eng., 27, 23-30. http://www.scielo.br/pdf/jbsmse/v27n1/25373.pdf
  • Thome J.R. (2005) Update on advances in flow pattern based two phase heat transfer models, Experimental Thermal and Fluid Science, 29(3), 341-349. doi:10.1016/j.expthermflusci.2004.05.015
  • Thome J.R., Ould Didi, M.B. and Kattan N. (2002) Prediction of two phase pressure gradients of refrigerants in horizontal tubes, International Journal of Refrigeration, 25, 935-947. doi:10.1016/S0140-7007(01)00099-8
  • Triplett, K. A., Ghiaasiaan, S.M., Abdel-Khalik, S.I. and Sadowski, D.L. (1999) Gas-liquid two-phase flow in microchannels,Part I: Two-phase flow patterns, International Journal of Multiphase Flow, 25, 377-394. doi:10.1016/S0301-9322(98)00054-8
  • Winkler, J., Killion, J. and Srinivas G. (2012) Void fractions for condensing refrigerant flow in small channels. Part II: Void fraction measurement and modeling, International Journal of Refrigeration, 35, 246-262. doi:10.1016/j.ijrefrig.2011.08.012
  • Winkler, J., Killion, J., Srinivas G. and Fronk, B. M. (2012) Void fractions for condensing refrigerant flow in small channels: Part I literature review, International Journal of Refrigeration, 35, 219-245. doi:10.1016/j.ijrefrig.2011.09.013
  • Yashar, D. A., Newell, T. A. and Chato, J. C. (1998) Experimental investigation of void fraction during horizontal flow in smaller diameter refrigeration applications, ACRC TechnicalReport141.https://www.ideals.illinois.edu/bitstream/handle/2142/11849/TR140.pdf?sequence=2
  • Zivi S.M. (1964) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, Transactions ASME Journal of Heat Transfer Series C, 86, 247–252. doi:10.1115/1.3687113

BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI

Yıl 2017, , 97 - 114, 27.12.2017
https://doi.org/10.17482/uumfd.371869

Öz

Boşluk oranı iki fazlı akışta akışın karakterini
tanımlamak için kullanılan önemli parametrelerden biridir. Bununla beraber
değişken akış koşulları ve akış türü nedeniyle boşluk oranını belirlemek çok
kolay değildir. Literatürde bir boru veya kanal içinde boşluk oranını tanımlama
üzere sistem, akış ve akışkan ile ilgili parametreleri kullanan pek çok model
bulunmaktadır. Farklı akış tipleri için pek çok korelasyon bulunduğu için bu
çalışmada akışla ilgili herhangi bir parametre kullanmayan bir deneysel yöntem
önerilmiştir.  Görüntü işleme yöntemi
R600a akışkanının dairesel bir boru içerisinde iki fazlı akışına uygulanmıştır.
Yüksek hızlı kamera ile elde edilen görüntüler MATLAB görüntü işleme aracını
kullanarak geliştirilen bir yazılımda işlenmiştir. Ayrıca sonuçlar literatürde sık
kullanılan korelasyonlarla karşılaştırılmıştır.

Kaynakça

  • Armand A.A. and Treschev, G.G. (1946) The Resistance During the Movement of a Two-phase System in Horizontal Pipes, IzvestiaVse Teplotekh. Inst.,1, 16–23.
  • Baroczy C.J., (1965) Correlation of liquid fraction in two-phase flow with application to liquid metals, Chemical Engineering Progress Symposium Series, 61 (57), 179–191.
  • Bowers, C. D. and Hrnjak, P. S. (2010) Determination of Void Fraction in Separated Two-Phase Flows Using Optical Techniques, International Refrigeration and Air Conditioning Conference, Paper 1083. http://docs.lib.purdue.edu/iracc/1083
  • Cavallini, A., El-Hajal, J. and Thome, J. R. (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern, part 2: new heat transfer model based on flow regimes, International Journal of Heat and Mass Transfer, 46, 3349-3363. doi:10.1016/S0017-9310(03)00139-X, doi:10.1016/S0017-9310(03)00140-6
  • El-Hajal J. and Fauske H. (1961) Critical two-phase, steam-water flows, Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, CA, 79–89.
  • Godbole, P. V., Tang, C. C. and Ghajar, A. J. (2011) Comparison of Void Fraction Correlations for Different Flow Patterns in Upward Vertical Two-Phase Flow, Heat Transfer Engineering, 32, 843-860. doi:10.1080/01457632.2011.548285
  • Hibiki, T. and Mishima, K. (1996) Feasibility of high frame-rate neutron radiography by using a steady thermal neutron beam with 106 n/(cm2 s) flux, Nuclear Instruments and Methods in Physics Research, A369, 186-194. doi:10.1016/0168-9002(95)00795-4
  • Hibiki, T., Mishima, K. and Nishihara, H. (1997) Measurement of radial void fraction distribution of two-phase flow in a metallic round tube using neutrons as microscopic probes, Nuclear Instruments and Methods in Physics Research, A399, 432-438. doi:10.1016/S0168-9002(97)00941-8
  • Kariyasaki, A., Fukano, T., Ousaka, A. and Kagawa, M. (1991) Characteristics of time-varying void fraction in isothermal air-water concurrent flow in a horizontal capillary tube, Trans. JSME, 57, 4036-4043
  • Kawahara A., Kawaji, M., Chung, P.M.Y., Sadatomi, M. and Okayama K. (2005) Effects of channel diameter and liquid properties on void fraction in adiabatic two-phase flow through microchannels, Heat Transfer Engineering, 26, 13–19. doi:10.1080/01457630590907158
  • Koyama S., Lee, J. and Yonemoto, R. (2004) An investigation on void fraction of vapor-liquid two-phase flow for smooth and microfin tubes with R134a at adiabatic condition, International Journal of Multiphase Flow, 30, 291-310. doi:10.1016/j.ijmultiphaseflow.2003.10.009
  • Lockhart, R.W. and Martinelli R.C. (1949) Proposed correlation of data for isothermal twophase, two-component flow in pipes, Chemical Engineering Progress, 45, 39–48. http://www.ripublication.com/ijaer17/ijaerv12n7_23.pdf
  • Mishima, K. and Hibiki, T. (1996), Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. of Multiphase Flow, 22, 701-703. doi:10.1016/0301-9322(96)00010-9
  • Mishima, K., Hibiki, T. and Nishihara, H. (1997) Visualization and measurement of two-phase flow by using neutron radiography, Nuclear Engineering and Design, 175, 25-35. doi:10.1016/S0029-5493(97)00159-3
  • Premoli, A., Francesco, D. and Prima, A. (1971) An empirical correlation for evaluating twophase mixture density under adiabatic conditions, European Two-Phase Flow Group Meeting, Milan, Italy.
  • Saisorn, S. and Wongwises, S. (2009) An experimental investigation of two-phase air–water flow through a horizontal circular micro-channel, Experimental Thermal and Fluid Science, 33, 306-315. doi:10.1016/j.expthermflusci.2008.09.009
  • Smith S. J., Shao L. and Riffat S. B. (2001) Pressure drop of HFC refrigerants inside evaporator and condenser coils as determined by CFD, Applied Energy, 70, 169-178. doi:10.1016/S0306-2619(01)00022-8
  • Tandon T. N., Varma H. K. and Gupta C. P. (1985) A void fraction model for annular two-phase flow, International Journal of Heat Mass Transfer, 28, 191-198. doi:10.1016/0017-9310(85)90021-3
  • Thom J.R.S. (1964) Prediction of pressure drop during forced circulation boiling of water, International Journal of Heat and Mass Transfer, 7, 709–724. doi:10.1016/0017-9310(64)90002-X
  • Thome J.R (2004-2006) Engineering Data Book III, Wolverine Tube Inc.
  • Thome J.R. (2005) Condensation in plain horizontal tubes: Recent advances in modelling of heat transfer to pure fluids and mixtures, Journal of the Braz. Soc. of Mech. Sci.&Eng., 27, 23-30. http://www.scielo.br/pdf/jbsmse/v27n1/25373.pdf
  • Thome J.R. (2005) Update on advances in flow pattern based two phase heat transfer models, Experimental Thermal and Fluid Science, 29(3), 341-349. doi:10.1016/j.expthermflusci.2004.05.015
  • Thome J.R., Ould Didi, M.B. and Kattan N. (2002) Prediction of two phase pressure gradients of refrigerants in horizontal tubes, International Journal of Refrigeration, 25, 935-947. doi:10.1016/S0140-7007(01)00099-8
  • Triplett, K. A., Ghiaasiaan, S.M., Abdel-Khalik, S.I. and Sadowski, D.L. (1999) Gas-liquid two-phase flow in microchannels,Part I: Two-phase flow patterns, International Journal of Multiphase Flow, 25, 377-394. doi:10.1016/S0301-9322(98)00054-8
  • Winkler, J., Killion, J. and Srinivas G. (2012) Void fractions for condensing refrigerant flow in small channels. Part II: Void fraction measurement and modeling, International Journal of Refrigeration, 35, 246-262. doi:10.1016/j.ijrefrig.2011.08.012
  • Winkler, J., Killion, J., Srinivas G. and Fronk, B. M. (2012) Void fractions for condensing refrigerant flow in small channels: Part I literature review, International Journal of Refrigeration, 35, 219-245. doi:10.1016/j.ijrefrig.2011.09.013
  • Yashar, D. A., Newell, T. A. and Chato, J. C. (1998) Experimental investigation of void fraction during horizontal flow in smaller diameter refrigeration applications, ACRC TechnicalReport141.https://www.ideals.illinois.edu/bitstream/handle/2142/11849/TR140.pdf?sequence=2
  • Zivi S.M. (1964) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, Transactions ASME Journal of Heat Transfer Series C, 86, 247–252. doi:10.1115/1.3687113
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Burak Dibek Bu kişi benim

Hakan Demir

Yayımlanma Tarihi 27 Aralık 2017
Gönderilme Tarihi 30 Eylül 2016
Kabul Tarihi 28 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Dibek, B., & Demir, H. (2017). BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 97-114. https://doi.org/10.17482/uumfd.371869
AMA Dibek B, Demir H. BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI. UUJFE. Aralık 2017;22(3):97-114. doi:10.17482/uumfd.371869
Chicago Dibek, Burak, ve Hakan Demir. “BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 97-114. https://doi.org/10.17482/uumfd.371869.
EndNote Dibek B, Demir H (01 Aralık 2017) BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 97–114.
IEEE B. Dibek ve H. Demir, “BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI”, UUJFE, c. 22, sy. 3, ss. 97–114, 2017, doi: 10.17482/uumfd.371869.
ISNAD Dibek, Burak - Demir, Hakan. “BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 97-114. https://doi.org/10.17482/uumfd.371869.
JAMA Dibek B, Demir H. BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI. UUJFE. 2017;22:97–114.
MLA Dibek, Burak ve Hakan Demir. “BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 97-114, doi:10.17482/uumfd.371869.
Vancouver Dibek B, Demir H. BOŞLUK ORANININ GÖRÜNTÜ İŞLEME YARDIMIYLA BULUNMASI. UUJFE. 2017;22(3):97-114.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr