La0.7Ca0.1K0.2MnO3 nanoparticles were synthesized by sol-gel method. The structural, magnetic
and magneto-thermal properties of the compound were investigated in detail. Structural property was
performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the XRD pattern,
Rietveld analysis was used by the FullProf program. At the end of the analysis, it was observed that the
crystal lattice of the compound has an orthorhombic structure and that La2O3, Mn3O4 and MnO2
impurities were found. SEM analysis showed that the nanoparticles have a near- spherical geometry and
the impurities have a hexagonal and cube-shaped in some regions. As a result of the magnetic analysis, it
was observed that the compound occurred the ferromagnetic-partly paramagnetic phase transition at room
temperature. The saturation magnetization of the ferromagnetic part was 1.9 Am2
/kg and the coercivity of
the compound was determined to be 12 mT. The specific absorption rate (SAR) value of the compound
from the magneto- thermal measurements was calculated to be 11.5 W/g.
Ansari, L., Malaekeh-Nikouei, B. (2017) Magnetic silica nanocomposites for magnetic hyperthermia applications, International Journal of Hyperthermia, 33(3), 354-363.
doi:10.1080/02656736.2016.1243736
Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M. A., Hernando, A., de la Presa, P. (2016) Improving the magnetic heating by disaggregating nanoparticles, Journal of Alloys and Compounds, 663(Supplement C), 636-644. doi:10.1016/j.jallcom.2015.10.285
Bornstein, B. A., Zouranjian, P. S., Hansen, J. L., Fraser, S. M., Gelwan, L. A., Teicher, B. A., Svensson, G. K. (1993) Local hyperthermia, radiation therapy, and chemotherapy in
patients with local-regional recurrence of breast carcinoma, International Journal of Radiation Oncology*Biology*Physics, 25(1), 79-85. doi:10.1016/0360-3016(93)90148-O
Cristofolini, L., Szczepanowicz, K., Orsi, D., Rimoldi, T., Albertini, F., Warszynski, P. (2016) Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications, Acs
Applied Materials & Interfaces, 8(38), 25043-25050. doi:10.1021/acsami.6b05917
Cullity, B. D. 1972 Introduction to Magnetic Materials: Addison-Wesley Publishing Company.
Epherre, R., Duguet, E., Mornet, S., Pollert, E., Louguet, S., Lecommandoux, S., Schatz, C., Goglio, G. (2011) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route, Journal of Materials Chemistry, 21(12), 4393-4401. doi:10.1039/c0jm03963b
Falk, M. H., Issels, R. D. (2001) Hyperthermia in oncology, International Journal of Hyperthermia, 17(1), 1-18. doi:10.1080/02656730150201552
Gorbenko, O. Y., Markelova, M. N., Mel’nikov, O. V., Kaul, A. R., Atsarkin, V. A., Demidov, V. V., Mefed, A. E., Roy, E. J., Odintsov, B. M. (2009) Synthesis, composition,
and properties of the solid solutions La1−x AgyMnO3+δ, promising materials for cell hyperthermia, Doklady Chemistry, 424(1), 7-10. doi:10.1134/s0012500809010029
Guibert, C., Fresnais, J., Peyre, V., Dupuis, V. (2017) Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements, Journal of Magnetism and
Magnetic Materials, 421, 384-392. doi:10.1016/j.jmmm.2016.08.015
Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18), 3995-4021.
doi:10.1016/j.biomaterials.2004.10.012
Haase, C., Nowak, U. (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles, Physical Review B, 85(4), 045435
doi:10.1103/PhysRevB.85.045435.
Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., Kaiser, W. A. (2002) Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study,
Invest. Radiol., 37, 580–586. doi:10.1097/00004424-200210000-00008
Hilger, I., Kiessling, A., Romanus, E., Hiergeist, R., Rudolf, H. T., Andra, W., Roskos, M., Linss, W., Weber, P., Weitschies, W., Kaiser, W. A. (2004) Magnetic nanoparticles for
selective heating of magnetically labelled cells in culture: preliminary investigation, Nanotechnology, 15(8), 1027-1032. doi:10.1088/0957-4484/15/8/029
Hoang Nam, N., Huong, D. T. M., Luong, N. H. (2014) Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles, Ieee Transactions on Magnetics, 50(6), 1-4. doi:10.1109/tmag.2014.2307834
http://www.acarchemicals.com/ (Son erişim tarihi: 12.09.2019) Acar chemicals, A. C.
Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., Felix, R. (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 225(1-2), 118-126.
doi:10.1016/S0304-8853(00)01239-7
Kaman, O., Pollert, E., Veverka, P., Veverka, M., Hadova, E., Knizek, K., Marysko, M., Kaspar, P., Klementova, M., Grunwaldova, V., Vasseur, S., Epherre, R., Mornet, S., Goglio,
G., Duguet, E. (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating, Nanotechnology,
20(27), 275610. doi:10.1088/0957-4484/20/27/275610
Kumar, C. S., Mohammad, F. (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, 63(9), 789-808.
doi:10.1016/j.addr.2011.03.008
Kumar, S., Daverey, A., Khalilzad-Sharghi, V., Sahu, N. K., Kidambi, S., Othman, S. F., Bahadur, D. (2015) Theranostic fluorescent silica encapsulated magnetic nanoassemblies
for in vitro MRI imaging and hyperthermia, Rsc Advances, 5(66), 53180-53188. doi:10.1039/c5ra07632c
Mori, T., Inoue, K., Kamegashira, N. (2000) Phase behavior in the system LaxSr1−xMnO(5+x)/2 (x=0.8–1.0) with trivalent state of manganese ion, Journal of Alloys and
Compounds, 308(1-2), 87-93. doi:10.1016/s0925-8388(00)00900-2
Natividad, E., Castro, M., Goglio, G., Andreu, I., Epherre, R., Duguet, E., Mediano, A. (2012) New insights into the heating mechanisms and self-regulating abilities of manganite
perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale, 4(13), 3954-3962. doi:10.1039/c2nr30667k
Patterson, A. L. (1939) The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56(10), 978-982. doi:10.1103/PhysRev.56.978
Pollert, E., Knizek, K., Marysko, M., Kaspar, P., Vasseur, S., Duguet, E. (2007) New T-ctuned magnetic nanoparticles for self-controlled hyperthermia, Journal of Magnetism and
Magnetic Materials, 316(2), 122-125. doi:10.1016/j.jmmm.2007.02.031
Uskoković, V., Košak, A., Drofenik, M. (2006) Silica-coated lanthanum–strontium manganites for hyperthermia treatments, Materials Letters, 60(21-22), 2620-2622.
doi:10.1016/j.matlet.2006.01.047
Vasseur, S., Duguet, E., Portier, J., Goglio, G., Mornet, S., Hadova, E., Knizek, K., Marysko, M., Veverka, P., Pollert, E. (2006) Lanthanum manganese perovskite
nanoparticles as possible in vivo mediators for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 307(2), 330-330. doi:10.1016/j.jmmm.2006.06.034
La0.7Ca0.1K0.2MnO3 nanoparçacıklar sol-gel yöntemiyle sentezlendi. Bileşiğin yapısal, manyetik ve
manyeto-termal özellikleri detaylı bir biçimde incelendi. Yapısal özellikleri X-ışını kırınımı (XRD) ve
taramalı elektron mikroskobu (SEM) ile gerçekleştirildi. XRD deseninde FullProf programı yardımıyla
Rietveld analizi gerçekleştirildi. Analiz sonucunda bileşiğin kristal örgüsünün ortorombik yapıya sahip
olduğu ve içerisinde La2O3, Mn3O4 ve MnO2 safsızlıklarının bulunduğu gözlendi. SEM analiziyle
nanoparçacıkların küresele yakın bir geometriye sahip olduğu ve safsızlıkların altıgen ve küp şeklinde
belirli bölgelerde oluştuğu görüldü. Manyetik analizlerin sonucunda bileşiğin oda sıcaklığında
ferromanyetik kısmen paramanyetik duruma geçtiği görüldü. Ferromanyetik faza ait doyum
mıknatıslanması 1,9 Am2
/kg ve bileşiğin koarsivite değeri 12 mT olduğu belirlendi. Manyeto-termal
ölçümler sonucunda bileşiğin spesifik soğurma oranı (SAR) değeri 11,5 W/g olarak hesaplandı.
Ansari, L., Malaekeh-Nikouei, B. (2017) Magnetic silica nanocomposites for magnetic hyperthermia applications, International Journal of Hyperthermia, 33(3), 354-363.
doi:10.1080/02656736.2016.1243736
Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M. A., Hernando, A., de la Presa, P. (2016) Improving the magnetic heating by disaggregating nanoparticles, Journal of Alloys and Compounds, 663(Supplement C), 636-644. doi:10.1016/j.jallcom.2015.10.285
Bornstein, B. A., Zouranjian, P. S., Hansen, J. L., Fraser, S. M., Gelwan, L. A., Teicher, B. A., Svensson, G. K. (1993) Local hyperthermia, radiation therapy, and chemotherapy in
patients with local-regional recurrence of breast carcinoma, International Journal of Radiation Oncology*Biology*Physics, 25(1), 79-85. doi:10.1016/0360-3016(93)90148-O
Cristofolini, L., Szczepanowicz, K., Orsi, D., Rimoldi, T., Albertini, F., Warszynski, P. (2016) Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications, Acs
Applied Materials & Interfaces, 8(38), 25043-25050. doi:10.1021/acsami.6b05917
Cullity, B. D. 1972 Introduction to Magnetic Materials: Addison-Wesley Publishing Company.
Epherre, R., Duguet, E., Mornet, S., Pollert, E., Louguet, S., Lecommandoux, S., Schatz, C., Goglio, G. (2011) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route, Journal of Materials Chemistry, 21(12), 4393-4401. doi:10.1039/c0jm03963b
Falk, M. H., Issels, R. D. (2001) Hyperthermia in oncology, International Journal of Hyperthermia, 17(1), 1-18. doi:10.1080/02656730150201552
Gorbenko, O. Y., Markelova, M. N., Mel’nikov, O. V., Kaul, A. R., Atsarkin, V. A., Demidov, V. V., Mefed, A. E., Roy, E. J., Odintsov, B. M. (2009) Synthesis, composition,
and properties of the solid solutions La1−x AgyMnO3+δ, promising materials for cell hyperthermia, Doklady Chemistry, 424(1), 7-10. doi:10.1134/s0012500809010029
Guibert, C., Fresnais, J., Peyre, V., Dupuis, V. (2017) Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements, Journal of Magnetism and
Magnetic Materials, 421, 384-392. doi:10.1016/j.jmmm.2016.08.015
Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18), 3995-4021.
doi:10.1016/j.biomaterials.2004.10.012
Haase, C., Nowak, U. (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles, Physical Review B, 85(4), 045435
doi:10.1103/PhysRevB.85.045435.
Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., Kaiser, W. A. (2002) Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study,
Invest. Radiol., 37, 580–586. doi:10.1097/00004424-200210000-00008
Hilger, I., Kiessling, A., Romanus, E., Hiergeist, R., Rudolf, H. T., Andra, W., Roskos, M., Linss, W., Weber, P., Weitschies, W., Kaiser, W. A. (2004) Magnetic nanoparticles for
selective heating of magnetically labelled cells in culture: preliminary investigation, Nanotechnology, 15(8), 1027-1032. doi:10.1088/0957-4484/15/8/029
Hoang Nam, N., Huong, D. T. M., Luong, N. H. (2014) Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles, Ieee Transactions on Magnetics, 50(6), 1-4. doi:10.1109/tmag.2014.2307834
http://www.acarchemicals.com/ (Son erişim tarihi: 12.09.2019) Acar chemicals, A. C.
Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., Felix, R. (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 225(1-2), 118-126.
doi:10.1016/S0304-8853(00)01239-7
Kaman, O., Pollert, E., Veverka, P., Veverka, M., Hadova, E., Knizek, K., Marysko, M., Kaspar, P., Klementova, M., Grunwaldova, V., Vasseur, S., Epherre, R., Mornet, S., Goglio,
G., Duguet, E. (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating, Nanotechnology,
20(27), 275610. doi:10.1088/0957-4484/20/27/275610
Kumar, C. S., Mohammad, F. (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, 63(9), 789-808.
doi:10.1016/j.addr.2011.03.008
Kumar, S., Daverey, A., Khalilzad-Sharghi, V., Sahu, N. K., Kidambi, S., Othman, S. F., Bahadur, D. (2015) Theranostic fluorescent silica encapsulated magnetic nanoassemblies
for in vitro MRI imaging and hyperthermia, Rsc Advances, 5(66), 53180-53188. doi:10.1039/c5ra07632c
Mori, T., Inoue, K., Kamegashira, N. (2000) Phase behavior in the system LaxSr1−xMnO(5+x)/2 (x=0.8–1.0) with trivalent state of manganese ion, Journal of Alloys and
Compounds, 308(1-2), 87-93. doi:10.1016/s0925-8388(00)00900-2
Natividad, E., Castro, M., Goglio, G., Andreu, I., Epherre, R., Duguet, E., Mediano, A. (2012) New insights into the heating mechanisms and self-regulating abilities of manganite
perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale, 4(13), 3954-3962. doi:10.1039/c2nr30667k
Patterson, A. L. (1939) The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56(10), 978-982. doi:10.1103/PhysRev.56.978
Pollert, E., Knizek, K., Marysko, M., Kaspar, P., Vasseur, S., Duguet, E. (2007) New T-ctuned magnetic nanoparticles for self-controlled hyperthermia, Journal of Magnetism and
Magnetic Materials, 316(2), 122-125. doi:10.1016/j.jmmm.2007.02.031
Uskoković, V., Košak, A., Drofenik, M. (2006) Silica-coated lanthanum–strontium manganites for hyperthermia treatments, Materials Letters, 60(21-22), 2620-2622.
doi:10.1016/j.matlet.2006.01.047
Vasseur, S., Duguet, E., Portier, J., Goglio, G., Mornet, S., Hadova, E., Knizek, K., Marysko, M., Veverka, P., Pollert, E. (2006) Lanthanum manganese perovskite
nanoparticles as possible in vivo mediators for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 307(2), 330-330. doi:10.1016/j.jmmm.2006.06.034
Tekgül, A. (2019). La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 153-162. https://doi.org/10.17482/uumfd.417524
AMA
Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. December 2019;24(3):153-162. doi:10.17482/uumfd.417524
Chicago
Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 3 (December 2019): 153-62. https://doi.org/10.17482/uumfd.417524.
EndNote
Tekgül A (December 1, 2019) La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 153–162.
IEEE
A. Tekgül, “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”, UUJFE, vol. 24, no. 3, pp. 153–162, 2019, doi: 10.17482/uumfd.417524.
ISNAD
Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (December 2019), 153-162. https://doi.org/10.17482/uumfd.417524.
JAMA
Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. 2019;24:153–162.
MLA
Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 3, 2019, pp. 153-62, doi:10.17482/uumfd.417524.
Vancouver
Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. 2019;24(3):153-62.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr