Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuru Tip Transformatörlerin Dış Ortamlarda Kullanılabilmesi İçin Deneysel Ve Simülasyon Ile Termal Analizine Yeni Yaklaşım

Yıl 2019, , 103 - 114, 30.08.2019
https://doi.org/10.17482/uumfd.459339

Öz







Kuru tip transformatörlerin
(KTT) yağlı tip transformatörlere göre avantajları göz önünde
bulundurulduğunda, dış mekânlarda da kullanılabilir duruma getirilmesi bu
çalışmanın esas amacını oluşturmaktadır.
Bu noktadan yola çıkılarak ilk önce
1500 VA kuru tip transformatörün termal kamera ile çekirdek ve
sargılarındaki sıcaklıklar ölçülmüştür. Böylelikle transformatörün çalışma
sırasında ulaşabileceği en yüksek sıcaklık değeri elde edilmeye çalışılmıştır.
Fiziksel model baz alınarak elde edilen tasarım değerleri ile Ansys programında
tasarlanan KTT simüle edilmiş, çıkışın yüklü durumunda en yüksek sıcaklık
değeri ile gerçek değer karşılaştırılarak simülasyon test edilmiştir. Daha sonra
bu elde edilen sıcaklık değerine göre trafonun dış ortamlarda da
kullanılabilmesi için bir mahfaza tasarlanmıştır. 1500 VA KTT’nin termal kamera
test düzeneği ile ölçülen 129 ° C en sıcak nokta sıcaklık değerinin Ansys
Fluent (Ansys Inc., Canonsburg, PA, ABD) ile simüle edilen tabi soğutmalı 
mahfaza 
içindeki sıcaklık ile aynı olduğu görülmüştür. KTT' nin zorlamalı
soğutma alanındaki sıcaklığı, yaklaşık % 4,6 azalarak 123 ° C'ye
düşürülmektedir. Bu şekilde tasarlanan yeni mahfaza, transformatörün dış mekânlarda
kullanılabilirliğini sağlamakta ve elde edilen düşük sıcaklık KTT' nin kullanım
ömrünü de artırmaktadır, dolayısıyla maliyetini de düşürmektedir.


Kaynakça

  • 1. Adly, Amr A., and Salwa K. Abd-El-Hafiz. 2014. “A Performance-Oriented Power Transformer Design Methodology Using Multi-Objective Evolutionary Optimization.” Journal of Advanced Research 6 (3): 417–23. https://doi.org/10.1016/j.jare.2014.08.003.
  • 2. Amoiralis, E.I., P.S. Georgilakis, and A.T. Gioulekas. 2006. An Artificial Neural Network for the Selection of Winding Material in Power Transformers. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 3955 LNAI. https://doi.org/10.1007/11752912_46.
  • 3. Finocchio, Marco A Ferreira, Jose Joelmir Lopes, Jose Alexandre de França, Juliani Chico Piai, and Jose Fernando Mangili Jr. 2017. “Neural Networks Applied to the Design of Dry-Type Transformers: An Example to Analyze the Winding Temperature and Elevate the Thermal Quality.” International Transactions on Electrical Energy Systems 27 (3): 1–10. https://doi.org/10.1002/etep.2257.
  • 4. Gastelurrutia, Jon, Juan Carlos Ramos, Gorka S. Larraona, Alejandro Rivas, Josu Izagirre, and Luis Del Río. 2011. “Numerical Modelling of Natural Convection of Oil inside Distribution Transformers.” Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2010.10.004.
  • 5. Geromel, Luiz H., and Carlos R. Souza. 2002. “The Application of Intelligent Systems in Power Transformer Design.” Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering, 285–90.
  • 6. Incropera, Frank P, David P DeWitt, Theodore L Bergman, and Adrienne S Lavine. 2007. “Heat and Mass Transfer - Incropera 6e.” Fundamentals of Heat and Mass Transfer. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
  • 7. Jabr, Rabih A. 2005. “Application of Geometric Programming to Transformer Design.” IEEE Transactions on Magnetics 41 (11): 4261–69. https://doi.org/10.1109/TMAG.2005.856921.
  • 8. Jian Sheng Chen, Hui Gang Sun, Chao Lu, Qing Zheng, and Yi Ren Liu. 2013. “Numerical Calculation of Dry‐type Transformer and Temperature Rise Analysis.” In Materials Processing and Manufacturing III, Volume 753 of Advanced Materials Research 753: 1025–30.
  • 9. Kweon, Dong Jin, Kyo Sun Koo, Jung Wook Woo, and Joo Sik Kwak. 2012. “A Study on the Hot Spot Temperature in 154kV Power Transformers.” Journal of Electrical Engineering and Technology 7 (3): 312–19. https://doi.org/http://dx.doi.org/10.5370/JEET.2012.7.3.312.
  • 10. Lee, Moonhee, Hussein A. Abdullah, Jan C. Jofriet, and Dhiru Patel. 2010. “Temperature Distribution in Foil Winding for Ventilated Dry-Type Power Transformers.” Electric Power Systems Research 80 (9): 1065–73. https://doi.org/10.1016/j.epsr.2010.01.013.
  • 11. Lundgaard, Lars E., Walter Hansen, Dag Linhjell, and Terence J. Painter. 2004. “Aging of Oil-Impregnated Paper in Power Transformers.” IEEE Transactions on Power Delivery. https://doi.org/10.1109/TPWRD.2003.820175.
  • 12. M. A. Arjona, C. Hernandez, R. Escarela‐Perez, and E. Melgoza. 2014. “Thermal Analysis of a Dry‐type Distribution Power Transformer Using Fea.” In In International Conference on Electrical Machines, 2270–74.
  • 13. Oommen, T. V., and Thomas A. Prevost. 2006. “Cellulose Insulation in Oil-Filled Power Transformers: Part II - Maintaining Insulation Integrity and Life.” IEEE Electrical Insulation Magazine. https://doi.org/10.1109/MEI.2006.1618996.
  • 14. Özen Metal, Aliminyum Sac Levha Ölçüleri, Özen Metal A.Ş., http://www.ozenmetal.com.tr/aluminyum-levha.asp, 2018.
  • 15. Pierce, L.W., and T. Holifield. 1999. “A Thermal Model for Optimized Distribution and Small Power Transformer Design.” 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333) 2: 925–29 vol.2. https://doi.org/10.1109/TDC.1999.756173.
  • 16. Smolka, Jacek, and Andrzej J. Nowak. 2008. “Experimental Validation of the Coupled Fluid Flow, Heat Transfer and Electromagnetic Numerical Model of the Medium-Power Dry-Type Electrical Transformer.” International Journal of Thermal Sciences 47 (10): 1393–1410. https://doi.org/10.1016/j.ijthermalsci.2007.11.004.
  • 17. Wakil, N. El, N.-C. Chereches, and J. Padet. 2005. “Numerical Study of Heat Transfer and Fluid Flow in a Power Transformer.” International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2005.09.002.
  • 18. Wang, Shiyou, Youyuan Wang, and Xuetong Zhao. 2015. “Calculating Model of Insulation Life Loss of Dry- Type Transformer Based on the Hot-Spot Temperature.” In Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2015-Octob:720–23. https://doi.org/10.1109/ICPADM.2015.7295373.
  • 19. Yadav, Amit Kr, Abdul Azeem, Akhilesh Singh, Hasmat Malik, and O P Rahi. 2011. “Application Research Based on Artificial Neural Network (ANN) to Predict No-Load Loss for Transformer’s Design.” 2011 International Conference on Communication Systems and Network Technologies 0: 180–83. https://doi.org/10.1109/CSNT.2011.45.
  • 20. Yaman, Gulsen, Ramazan Altay, and Ramazan Yaman. 2019. “Validation of Computational Fluid Dynamic Analysis of Natural Convection Conditions for a Resin Dry-Type Transformer with a Cabin.” Thermal Science. https://doi.org/10.2298/TSCI180919327Y.

EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS

Yıl 2019, , 103 - 114, 30.08.2019
https://doi.org/10.17482/uumfd.459339

Öz

Since dry type transformers (DTT) has many advantages
over the oily ones, this study focuses on the realibity, feasibility and cost
of DTT to be used at outdoor applications. On this respect the core and winding
temperatures of the 1500 VA DTT transformer model is measured by thermal camera
The operational highest temperature of the transformer is obtained by this way.
The DTT is simulated by ANSYS with the design parameters based On the physical
model, and the simulation values and the real ones are compared to satisfy the
procedure. Then in the light of simulation results, an outer cover is designed
for outdoor applications which is the goal of the paper. The real hot spot
temperature of the 1500 VA DTT is 129 ° C remains the same with the new cover
simulation designed DTT that naturally cooled. Furthermore, the temperature of
the new design DTT is reduced by about 4.6% to 123 ° C by forced cooling. So
the new cover design not only provide to be used at outdoors applications, it
also increases the lifetime of the device, and reduces the operation costs.

Kaynakça

  • 1. Adly, Amr A., and Salwa K. Abd-El-Hafiz. 2014. “A Performance-Oriented Power Transformer Design Methodology Using Multi-Objective Evolutionary Optimization.” Journal of Advanced Research 6 (3): 417–23. https://doi.org/10.1016/j.jare.2014.08.003.
  • 2. Amoiralis, E.I., P.S. Georgilakis, and A.T. Gioulekas. 2006. An Artificial Neural Network for the Selection of Winding Material in Power Transformers. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 3955 LNAI. https://doi.org/10.1007/11752912_46.
  • 3. Finocchio, Marco A Ferreira, Jose Joelmir Lopes, Jose Alexandre de França, Juliani Chico Piai, and Jose Fernando Mangili Jr. 2017. “Neural Networks Applied to the Design of Dry-Type Transformers: An Example to Analyze the Winding Temperature and Elevate the Thermal Quality.” International Transactions on Electrical Energy Systems 27 (3): 1–10. https://doi.org/10.1002/etep.2257.
  • 4. Gastelurrutia, Jon, Juan Carlos Ramos, Gorka S. Larraona, Alejandro Rivas, Josu Izagirre, and Luis Del Río. 2011. “Numerical Modelling of Natural Convection of Oil inside Distribution Transformers.” Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2010.10.004.
  • 5. Geromel, Luiz H., and Carlos R. Souza. 2002. “The Application of Intelligent Systems in Power Transformer Design.” Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering, 285–90.
  • 6. Incropera, Frank P, David P DeWitt, Theodore L Bergman, and Adrienne S Lavine. 2007. “Heat and Mass Transfer - Incropera 6e.” Fundamentals of Heat and Mass Transfer. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
  • 7. Jabr, Rabih A. 2005. “Application of Geometric Programming to Transformer Design.” IEEE Transactions on Magnetics 41 (11): 4261–69. https://doi.org/10.1109/TMAG.2005.856921.
  • 8. Jian Sheng Chen, Hui Gang Sun, Chao Lu, Qing Zheng, and Yi Ren Liu. 2013. “Numerical Calculation of Dry‐type Transformer and Temperature Rise Analysis.” In Materials Processing and Manufacturing III, Volume 753 of Advanced Materials Research 753: 1025–30.
  • 9. Kweon, Dong Jin, Kyo Sun Koo, Jung Wook Woo, and Joo Sik Kwak. 2012. “A Study on the Hot Spot Temperature in 154kV Power Transformers.” Journal of Electrical Engineering and Technology 7 (3): 312–19. https://doi.org/http://dx.doi.org/10.5370/JEET.2012.7.3.312.
  • 10. Lee, Moonhee, Hussein A. Abdullah, Jan C. Jofriet, and Dhiru Patel. 2010. “Temperature Distribution in Foil Winding for Ventilated Dry-Type Power Transformers.” Electric Power Systems Research 80 (9): 1065–73. https://doi.org/10.1016/j.epsr.2010.01.013.
  • 11. Lundgaard, Lars E., Walter Hansen, Dag Linhjell, and Terence J. Painter. 2004. “Aging of Oil-Impregnated Paper in Power Transformers.” IEEE Transactions on Power Delivery. https://doi.org/10.1109/TPWRD.2003.820175.
  • 12. M. A. Arjona, C. Hernandez, R. Escarela‐Perez, and E. Melgoza. 2014. “Thermal Analysis of a Dry‐type Distribution Power Transformer Using Fea.” In In International Conference on Electrical Machines, 2270–74.
  • 13. Oommen, T. V., and Thomas A. Prevost. 2006. “Cellulose Insulation in Oil-Filled Power Transformers: Part II - Maintaining Insulation Integrity and Life.” IEEE Electrical Insulation Magazine. https://doi.org/10.1109/MEI.2006.1618996.
  • 14. Özen Metal, Aliminyum Sac Levha Ölçüleri, Özen Metal A.Ş., http://www.ozenmetal.com.tr/aluminyum-levha.asp, 2018.
  • 15. Pierce, L.W., and T. Holifield. 1999. “A Thermal Model for Optimized Distribution and Small Power Transformer Design.” 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333) 2: 925–29 vol.2. https://doi.org/10.1109/TDC.1999.756173.
  • 16. Smolka, Jacek, and Andrzej J. Nowak. 2008. “Experimental Validation of the Coupled Fluid Flow, Heat Transfer and Electromagnetic Numerical Model of the Medium-Power Dry-Type Electrical Transformer.” International Journal of Thermal Sciences 47 (10): 1393–1410. https://doi.org/10.1016/j.ijthermalsci.2007.11.004.
  • 17. Wakil, N. El, N.-C. Chereches, and J. Padet. 2005. “Numerical Study of Heat Transfer and Fluid Flow in a Power Transformer.” International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2005.09.002.
  • 18. Wang, Shiyou, Youyuan Wang, and Xuetong Zhao. 2015. “Calculating Model of Insulation Life Loss of Dry- Type Transformer Based on the Hot-Spot Temperature.” In Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2015-Octob:720–23. https://doi.org/10.1109/ICPADM.2015.7295373.
  • 19. Yadav, Amit Kr, Abdul Azeem, Akhilesh Singh, Hasmat Malik, and O P Rahi. 2011. “Application Research Based on Artificial Neural Network (ANN) to Predict No-Load Loss for Transformer’s Design.” 2011 International Conference on Communication Systems and Network Technologies 0: 180–83. https://doi.org/10.1109/CSNT.2011.45.
  • 20. Yaman, Gulsen, Ramazan Altay, and Ramazan Yaman. 2019. “Validation of Computational Fluid Dynamic Analysis of Natural Convection Conditions for a Resin Dry-Type Transformer with a Cabin.” Thermal Science. https://doi.org/10.2298/TSCI180919327Y.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Murat Toren 0000-0002-7012-7088

Mehmet Celebi Bu kişi benim 0000-0002-0769-299X

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 12 Eylül 2018
Kabul Tarihi 17 Nisan 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Toren, M., & Celebi, M. (2019). EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 103-114. https://doi.org/10.17482/uumfd.459339
AMA Toren M, Celebi M. EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS. UUJFE. Ağustos 2019;24(2):103-114. doi:10.17482/uumfd.459339
Chicago Toren, Murat, ve Mehmet Celebi. “EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 103-14. https://doi.org/10.17482/uumfd.459339.
EndNote Toren M, Celebi M (01 Ağustos 2019) EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 103–114.
IEEE M. Toren ve M. Celebi, “EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS”, UUJFE, c. 24, sy. 2, ss. 103–114, 2019, doi: 10.17482/uumfd.459339.
ISNAD Toren, Murat - Celebi, Mehmet. “EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 103-114. https://doi.org/10.17482/uumfd.459339.
JAMA Toren M, Celebi M. EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS. UUJFE. 2019;24:103–114.
MLA Toren, Murat ve Mehmet Celebi. “EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 103-14, doi:10.17482/uumfd.459339.
Vancouver Toren M, Celebi M. EXPERIMENTAL AND SIMULATING OF DRY-TYPE TRANSFORMER THERMAL ANALYSIS WITH A NEW APPROACH FOR OUTDOOR APPLICATIONS. UUJFE. 2019;24(2):103-14.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr