Metanollü yakıt hücreleri için yüksek sıralı ve
kaliteli TiO2 nano-tüpler (TiO2-NTs) katalizör desteği
olarak hazırlanmıştır. Sıralı TiO2-NTs hazırlandıktan sonra yüzeyine
küçük miktarlarda nikel (Ni) nanotanecikleri (TiO2-NTs-Ni)
elektrokimyasal olarak çöktürülmüştür. Bu şekilde hazırlanan anot
katalizörlerinin yüzey ve kristal yapısı sırasıyla taramalı elektron mikroskobu
(SEM), dönüşümlü voltametri (CV) ve X-ışını kırınımı (XRD) ile karakterize
edilmiştir. Hazırlanan TiO2-NTs-Ni anot katalizörlerinin metanol
oksidasyonu için katalitik aktiviteleri 1 M KOH içeren 1 M Metanol çözeltisinde
CV ve zamanla kararlılıkları ve dayanıklıkları kronoamperometri (CA) tekniği
ile araştırılmıştır. Elde edilen sonuçlara göre TiO2-NTs metanollü
ortamda aktivite göstermemiş bununla beraber yüzeyi az miktarda Ni ile
kaplanması metanol oksidasyonunu arttırmıştır. Katalizör yüzeyindeki Ni miktarı
arttıkça oksidasyon hızı artmaktadır. CV tarama hızı arttıkça oksidasyon pik akımlarında
artış gözlemlenmiştir. CA sonuçlarına göre hazırlanan katalizörler bir saat
boyunca çalışılan ortamda kararlı ve dayanıklı yapı sergilemiştir. Hazırlanan
TiO2-NTs-Ni metanollü yakıt hücreleri için etkin bir anot katalizörü
olarak kullanılabilir.
1. Singh, G. K. (2013) Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi:10.1016/j.energy.2013.02.057
2. Lee, H., Hong, M., Bae, S., Lee, H., Park, E., Kim, K. (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes, Journal of Materials Chemistry, 13(10), 2626-2632.
doi:10.1039/B303980C
3. Ahmad, F., Sheha, E. (2013) Preparation and physical properties of (PVA) 0.7 (NaBr) 0.3 (H3PO4)xM solid acid membrane for phosphoric acid–Fuel cells, Journal of advanced research, 4(2), 155-161. doi:10.1016/j.jare.2012.05.001
4. Pinar, F. J., Cañizares, P., Rodrigo, M. A., Ubeda, D., Lobato, J. (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells, Effect on titanium dioxide amount. RSC Advances, 2(4), 1547-1556. doi: 10.1039/C1RA01084K
5. Chen, M., Lou, B., Ni, Z., Xu, B. (2015) PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 165, 105-109. doi:10.1016/j.electacta.2015.03.007
6. Wasmus, S., Küver, A. (1999) Methanol oxidation and direct methanol fuel cells: a selective review1, Journal of Electroanalytical Chemistry, 461(1-2), 14-31. doi:10.1016/S0022-0728(98)00197-1
7. Pu, L., Zhang, H., Yuan, T., Zou, Z., Zou, L., Li, X. M., Yang, H. (2015) High performance platinum nanorod assemblies based double-layered cathode for passive direct methanol fuel cells, Journal of Power Sources, 276, 95-101. doi:10.1016/j.jpowsour.2014.11.100
8. Antolini, E., Lopes, T. R. V. P., Gonzalez, E. R. (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells, Journal of Alloys and Compounds, 461(1-2), 253-262. doi:10.1016/j.jallcom.2007.06.077
9. Ferrin, P., Nilekar, A. U., Greeley, J., Mavrikakis, M., Rossmeisl, J. (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts, Surface Science, 602(21), 3424-3431. doi:10.1016/j.susc.2008.08.011
10. Telli, E., Döner, A., Kardaş, G. (2013) Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochimica Acta, 107, 216-224. doi:10.1016/j.electacta.2013.05.113
11. Solmaz, R. (2017) Gold‐supported activated NiZn coatings: hydrogen evolution and corrosion studies, International Journal of Energy Research, 41(10), 1452-1459. doi:10.1002/er.3724
12. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., Mahjani, M. G. (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode, International Journal of Hydrogen Energy, 33(16), 4367-4376. doi:10.1016/j.ijhydene.2008.05.075
13. Mao, Y. H., Chen, C. Y., Fu, J. X., Lai, T. Y., Lu, F. H., Tsai, Y. C. (2018) Electrodeposition of nickel copper on titanium nitride for methanol electrooxidation, Surface and Coatings Technology, 350, 949-953. doi:10.1016/j.surfcoat.2018.03.048
14. Telli, E., Solmaz, R., Kardaş, G. (2011). Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium, Russian Journal of Electrochemistry, 47(7), 811-818. doi:10.1134/S1023193511070135
15. Liang, R., Hu, A., Persic, J., Zhou, Y. N. (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation, Nano-Micro Letters, 5(3), 202-212. doi:10.1007/BF03353751
16. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Watanabe, T. (1997) Light-induced amphiphilic surfaces, Nature, 388(6641), 431. doi:10.1038/41233
17. Sun, T., Liu, E., Fan, J., Hu, X., Wu, F., Hou, W., Kang, L. (2013) High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chemical engineering journal, 228, 896-906. doi:10.1016/j.cej.2013.04.065
18. Cheng, C., Ren, W., Zhang, H. (2014) 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting, Nano Energy, 5, 132-138. doi:10.1016/j.nanoen.2014.03.002
19. Baran, E., Yazıcı, B. (2016) Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, International Journal of Hydrogen Energy, 41(4), 2498-2511. doi:10.1016/j.ijhydene.2015.12.028
20. Radecka, M., Wnuk, A., Trenczek-Zajac, A., Schneider, K., Zakrzewska, K. (2015) TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting, International Journal of Hydrogen Energy, 40(1), 841-851. doi:10.1016/j.ijhydene.2014.09.154
21. Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., Lisboa-Filho, P. N. (2018) Surface Physicochemical and Structural Analysis of Functionalized Titanium Dioxide Films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 168-178. doi:10.1016/j.colsurfa.2018.03.019
22. Huang, J., Ding, L., Xi, Y., Shi, L., Su, G., Gao, R., Cao, L. (2018) Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity, Solid State Sciences, 80, 116-122. doi:10.1016/j.solidstatesciences.2018.03.011
23. Şahin, E. A., Doğru, Mert, B., Toprak, Döşlü, S., Kardaş, G. Yazıcı, B. (2012) Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes, International Journal of Hydrogen Energy, 37, 4367-4376. doi:10.1016/j.ijhydene.2012.05.059
24. Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y. R., Gedanken, A. (2001) Sonochemical synthesis of titania whiskers and nanotubes, Chemical communications, (24), 2616-2617. doi:10.1039/B108968B
25. Baran, E., Yazıcı, B. (2015) Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I−/I3− electrolyte by electrochemical impedance spectroscopy, Applied Surface Science, 357, 2206–2216. http://dx.doi.org/10.1016/j.apsusc.2015.09.212
26. Yasuda, K., Schmuki, P. (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52, 4053-4061. doi:10.1016/j.electacta.2006.11.023
27. He, H., Xiao, P., Zhou, M., Zhang, Y., Lou, Q., Dong, X. (2012) Boosting catalytic activity with a p–n junction: Ni/TiO2 nanotube arrays composite catalyst for methanol oxidation, International Journal of Hydrogen Energy, 37(6), 4967-4973. doi:10.1016/j.ijhydene.2011.12.107
28. Cheshideh, H., Nasirpouri, F. (2017) Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol, Journal of Electroanalytical Chemistry, 797, 121-133. doi:10.1016/j.jelechem.2017.05.024
29. Wang, M., Guo, D. J., Li, H. L. (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry, 178(6), 1996-2000. doi:10.1016/j.jssc.2005.04.006
30. Alemu, H., Jüttner, K. (1988) Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurements, Electrochimica Acta, 33, 1101-1109. https://doi:org/10.1016/0013-4686(88)80201-9
31. Cao, H., Fan, Z., Hou, G., Tang, Y., Zheng, G. (2014) Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol, Electrochimica Acta, 125, 275–281. https://doi.org/10.1016/j.electacta.2014.01.101
1. Singh, G. K. (2013) Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi:10.1016/j.energy.2013.02.057
2. Lee, H., Hong, M., Bae, S., Lee, H., Park, E., Kim, K. (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes, Journal of Materials Chemistry, 13(10), 2626-2632.
doi:10.1039/B303980C
3. Ahmad, F., Sheha, E. (2013) Preparation and physical properties of (PVA) 0.7 (NaBr) 0.3 (H3PO4)xM solid acid membrane for phosphoric acid–Fuel cells, Journal of advanced research, 4(2), 155-161. doi:10.1016/j.jare.2012.05.001
4. Pinar, F. J., Cañizares, P., Rodrigo, M. A., Ubeda, D., Lobato, J. (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells, Effect on titanium dioxide amount. RSC Advances, 2(4), 1547-1556. doi: 10.1039/C1RA01084K
5. Chen, M., Lou, B., Ni, Z., Xu, B. (2015) PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 165, 105-109. doi:10.1016/j.electacta.2015.03.007
6. Wasmus, S., Küver, A. (1999) Methanol oxidation and direct methanol fuel cells: a selective review1, Journal of Electroanalytical Chemistry, 461(1-2), 14-31. doi:10.1016/S0022-0728(98)00197-1
7. Pu, L., Zhang, H., Yuan, T., Zou, Z., Zou, L., Li, X. M., Yang, H. (2015) High performance platinum nanorod assemblies based double-layered cathode for passive direct methanol fuel cells, Journal of Power Sources, 276, 95-101. doi:10.1016/j.jpowsour.2014.11.100
8. Antolini, E., Lopes, T. R. V. P., Gonzalez, E. R. (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells, Journal of Alloys and Compounds, 461(1-2), 253-262. doi:10.1016/j.jallcom.2007.06.077
9. Ferrin, P., Nilekar, A. U., Greeley, J., Mavrikakis, M., Rossmeisl, J. (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts, Surface Science, 602(21), 3424-3431. doi:10.1016/j.susc.2008.08.011
10. Telli, E., Döner, A., Kardaş, G. (2013) Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochimica Acta, 107, 216-224. doi:10.1016/j.electacta.2013.05.113
11. Solmaz, R. (2017) Gold‐supported activated NiZn coatings: hydrogen evolution and corrosion studies, International Journal of Energy Research, 41(10), 1452-1459. doi:10.1002/er.3724
12. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., Mahjani, M. G. (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode, International Journal of Hydrogen Energy, 33(16), 4367-4376. doi:10.1016/j.ijhydene.2008.05.075
13. Mao, Y. H., Chen, C. Y., Fu, J. X., Lai, T. Y., Lu, F. H., Tsai, Y. C. (2018) Electrodeposition of nickel copper on titanium nitride for methanol electrooxidation, Surface and Coatings Technology, 350, 949-953. doi:10.1016/j.surfcoat.2018.03.048
14. Telli, E., Solmaz, R., Kardaş, G. (2011). Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium, Russian Journal of Electrochemistry, 47(7), 811-818. doi:10.1134/S1023193511070135
15. Liang, R., Hu, A., Persic, J., Zhou, Y. N. (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation, Nano-Micro Letters, 5(3), 202-212. doi:10.1007/BF03353751
16. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Watanabe, T. (1997) Light-induced amphiphilic surfaces, Nature, 388(6641), 431. doi:10.1038/41233
17. Sun, T., Liu, E., Fan, J., Hu, X., Wu, F., Hou, W., Kang, L. (2013) High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chemical engineering journal, 228, 896-906. doi:10.1016/j.cej.2013.04.065
18. Cheng, C., Ren, W., Zhang, H. (2014) 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting, Nano Energy, 5, 132-138. doi:10.1016/j.nanoen.2014.03.002
19. Baran, E., Yazıcı, B. (2016) Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, International Journal of Hydrogen Energy, 41(4), 2498-2511. doi:10.1016/j.ijhydene.2015.12.028
20. Radecka, M., Wnuk, A., Trenczek-Zajac, A., Schneider, K., Zakrzewska, K. (2015) TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting, International Journal of Hydrogen Energy, 40(1), 841-851. doi:10.1016/j.ijhydene.2014.09.154
21. Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., Lisboa-Filho, P. N. (2018) Surface Physicochemical and Structural Analysis of Functionalized Titanium Dioxide Films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 168-178. doi:10.1016/j.colsurfa.2018.03.019
22. Huang, J., Ding, L., Xi, Y., Shi, L., Su, G., Gao, R., Cao, L. (2018) Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity, Solid State Sciences, 80, 116-122. doi:10.1016/j.solidstatesciences.2018.03.011
23. Şahin, E. A., Doğru, Mert, B., Toprak, Döşlü, S., Kardaş, G. Yazıcı, B. (2012) Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes, International Journal of Hydrogen Energy, 37, 4367-4376. doi:10.1016/j.ijhydene.2012.05.059
24. Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y. R., Gedanken, A. (2001) Sonochemical synthesis of titania whiskers and nanotubes, Chemical communications, (24), 2616-2617. doi:10.1039/B108968B
25. Baran, E., Yazıcı, B. (2015) Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I−/I3− electrolyte by electrochemical impedance spectroscopy, Applied Surface Science, 357, 2206–2216. http://dx.doi.org/10.1016/j.apsusc.2015.09.212
26. Yasuda, K., Schmuki, P. (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52, 4053-4061. doi:10.1016/j.electacta.2006.11.023
27. He, H., Xiao, P., Zhou, M., Zhang, Y., Lou, Q., Dong, X. (2012) Boosting catalytic activity with a p–n junction: Ni/TiO2 nanotube arrays composite catalyst for methanol oxidation, International Journal of Hydrogen Energy, 37(6), 4967-4973. doi:10.1016/j.ijhydene.2011.12.107
28. Cheshideh, H., Nasirpouri, F. (2017) Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol, Journal of Electroanalytical Chemistry, 797, 121-133. doi:10.1016/j.jelechem.2017.05.024
29. Wang, M., Guo, D. J., Li, H. L. (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry, 178(6), 1996-2000. doi:10.1016/j.jssc.2005.04.006
30. Alemu, H., Jüttner, K. (1988) Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurements, Electrochimica Acta, 33, 1101-1109. https://doi:org/10.1016/0013-4686(88)80201-9
31. Cao, H., Fan, Z., Hou, G., Tang, Y., Zheng, G. (2014) Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol, Electrochimica Acta, 125, 275–281. https://doi.org/10.1016/j.electacta.2014.01.101
Ülgen, A. T., Döner, A., & Haskul, M. (2019). DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 277-288. https://doi.org/10.17482/uumfd.473432
AMA
Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. April 2019;24(1):277-288. doi:10.17482/uumfd.473432
Chicago
Ülgen, Asaf Tolga, Ali Döner, and Mehmet Haskul. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 1 (April 2019): 277-88. https://doi.org/10.17482/uumfd.473432.
EndNote
Ülgen AT, Döner A, Haskul M (April 1, 2019) DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 277–288.
IEEE
A. T. Ülgen, A. Döner, and M. Haskul, “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”, UUJFE, vol. 24, no. 1, pp. 277–288, 2019, doi: 10.17482/uumfd.473432.
ISNAD
Ülgen, Asaf Tolga et al. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (April 2019), 277-288. https://doi.org/10.17482/uumfd.473432.
JAMA
Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. 2019;24:277–288.
MLA
Ülgen, Asaf Tolga et al. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 1, 2019, pp. 277-88, doi:10.17482/uumfd.473432.
Vancouver
Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. 2019;24(1):277-88.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr