Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Chemical Treatment Processes Effect on the Size Distribution of Olive Oil Mill Wastewater

Yıl 2019, , 469 - 482, 31.12.2019
https://doi.org/10.17482/uumfd.524279

Öz

In this experimental study, an olive oil mill wastewater (OOMW, COD:155000 mg/L;
TOC:40000; Total phenol(TPh): 4100 mg/L) was subjected to different chemical treatment processes
such as precipitation, coagulation, electrocoagulation and Fenton’s reagent. After the treatment processes,
the change in the organic content of OOMW was investigated by applying particle size distribution (PSD)
analysis. In this concept, sequential filtration/ultrafiltration procedure was followed by employing
different molecular weight cut-off membranes including 1600, 450, 220, 13, 8, 5, 3, 2 and 1 nm for raw
and treated OOMW samples. Accordingly, the PSD results for raw OOMW, the components of COD,
TOC, BOD5 and color (absorbance) parameters were mostly in the particle fractions (>1600 nm; 54% of
COD, 43% of TOC, 43% of BOD5 and 57% of color), while TPh parameter was distributed in the colloidal fractions (2 nm-1600 nm;54%). Among the treatment processes, the highest removals were
obtained from coagulation and precipitation processes (55-60% COD, 45-48% TOC and 32% TPh) that
based on the phase transfer removal mechanism. Otherwise, the obtained reductions by Fenton’s reagent
was poor. The major removals were observed in particulate fractions for COD-TOC where the main TPh
removal was observed both in particulate and colloidal fractions after treatment processes.

Kaynakça

  • APHA/AWWA/WPCP (2005). Standard Methods for the Examination of Water and Wastewater, 21st edn, ed by Clesceri, L.S., Greenberg, A.E., Eaton, A.D. American Public Health Association, Washington, DC.
  • Amor, C., Marchão, L., Lucas, M. S., Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2), 205. doi.org/10.3390/w11020205
  • Azaizeh, H., Halahlih, F., Najami, N.,Brunner, D., Faulstich,M., Tafesh, A. (2012). Antioxidant activity of phenolic fractions in olive mill wastewater, Food Chemistry, 134, 2226–2234. doi: 10.1016/j.foodchem.2012.04.035
  • Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F., Ozer, A. (2004). A review of waste management options in olive oil production. Critical Reviews in Environmental Science and Technology, 34(3), 209-247. doi:10.1080/10643380490279932
  • Azbar, N., Keskin, T. ve Çatalkaya, E.C. (2008). Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems, Biochemical Engineering Journal, 38, 379-383. doi: 10.1016/j.bej.2007.08.005
  • Berthe, C., Redon, E. ve Feuillade, G. (2008). Fractionation of the Organic Matter Contained in Leachate Resulting from two Modes of Landfilling: An Indicator of Waste Degradation. Journal of Hazardous Materials, 154, 262–271. doi: 10.1016/j.jhazmat.2007.10.022
  • Box, J.D. (1983). Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters, Water Research, 17, 511-525. doi: 10.1016/0043-1354(84)90135-0
  • Doğruel, S., Ölmez-Hancı, T., Kartal, Z., Arslan-Alaton, I., Orhon, D. (2009). Effect of Fenton’s oxidation on the particle size distribution of organic carbon in OMW, Water Research, 43, 3874-3983. doi: 10.1016/j.watres.2009.06.017
  • Dülekgürgen, E., Doğruel, S., Orhon, D. (2007). Effect of chemical and biological treatment on COD fingerprints of textile wastewaters, Water Science and Technology, 55, 277-287. doi.org/10.2166/wst.2007.332
  • Domingues, E., Gomes, J., Quina, M., Quinta-Ferreira, R., Martins, R. (2018). Detoxification of Olive Mill Wastewaters by Fenton’s Process. Catalysts, 8(12), 662. doi: 10.3390/catal8120662
  • El-Abbassi, A., Kiai, H., Hafidi, A.(2012). Phenolic profile and antioxidant activities of olive mill wastewater, Food Chemistry, 132, 406–412. doi: 10.1016/j.foodchem.2011.11.013
  • El-Gohary, F.A., Badawy, M.I., El-Khateeb, M.A., El-Kalliny, A.S., (2009). Integrated treatment of omw by the combination of Fenton’s reaction and anaerobic treatment, Journal of Hazardous Materials, 162, 1536-1541. doi: 10.1016/j.jhazmat.2008.06.098
  • Emamjomeh, M.M., Sivakumar, M. (2009), Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, Journal of Environmental Management, 90, 1663-1679. doi: 10.1016/j.jenvman.2008.12.011
  • Garcia-Castello, E., Cassano, A., Criscuoli,A., Conidi,C. ve Drioli, E. (2010). Recovery and Concentration of Polyphenols from Olive Mill Wastewaters by Integrated Membrane System, Water Research, 44, 3883 – 3892. doi: 10.1016/j.watres.2010.05.005
  • Goncalves, M. R., Costa, J.C., Marques, I. P., Alves, M. M. (2012). Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater, Water Research, 46,1684-1692. doi: 10.1016/j.watres.2011.12.046
  • Gürsoy-Haksevenler, B. H., Arslan-Alaton, İ. (2012). Karasuyun koagülasyon, elektrokoagülasyon ve Fenton prosesleri ile kimyasal arıtılabilirliği, itüdergisi/e su kirlenmesi kontrolü, 22, 11-21.
  • Hanafi, F., Assobhei, O. ve Mountadar, M. (2010). Detoxification and Discoloration of Moroccan OMWW by Electrocoagulation, Journal of Hazardous Materials, 174, 807-812. doi: 10.1016/j.jhazmat.2009.09.124
  • Iamarino, G., Rao, M.A., Gianfreda, L. (2009). Dephenolization and detoxification of OMW by purified biotic and abiotic oxidative catalysts, Chemosphere, 74, 216–223. doi: 10.1016/j.chemosphere.2008.09.061
  • ISO 6060 (1986). Determination of the Chemical Oxygen Demand. International Standards Organization, 1st edn, Geneva, Switzerland.
  • ISO 11348-3 (1998). Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (luminescent bacteria test)-Part 3: Method Using Freeze-Dried Bacteria, ISO, Geneva.
  • Karahan, Ö., Doğruel, S., Dülekgürgen, E., Orhon, D. (2008). COD fractionation of tannery wastewaters - particle size distribution, biodegradability and modeling, Water Research, 42, 1083-1092.doi:10.1016/j.watres.2007.10.001
  • Kiril-Mert, B. ve Kestioğlu, K. (2008). The Research of membrane technology treatability in different industrial wastewaters, Journal of New World Sciences Academy, 3, 1-19.
  • Kiril-Mert, B., Yonar, T., Kılıç, M. ve Kestioğlu, K. (2010). Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes, Journal of Hazardous Materials, 174, 122–128. doi:10.1016/j.jhazmat.2009.09.025
  • Lee, Z. S., Chin, S. Y., Lim, J. W., Witoon, T., Cheng, C. K. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental technology & innovation, 100377. doi:10.1016/j.eti.2019.100377
  • Nieto, L.M. Hodaifa, G., Rodríguez, S., Giménez, J.A., Ochando, J.(2011). Degradation of organic matter in OMW through homogeneous Fenton-like reaction, Chemical Engineering Journal, 173, 503-510. doi:10.1016/j.cej.2011.08.022
  • Ölmez-Hancı, T., Dülekgürgen, E., Arslan-Alaton, İ., Orhon, D. (2008). Effect of chemical treatment on the aromatic carbon content and particle size distribution-based organic matter profile of OMW, Fresenius Environmental Bulletin, 17, 1790-1795.
  • Rharrabti, Y., Yamani, M. E. (2018). Olive Mill Wastewater: Treatment and Valorization Technologies. In Handbook of Environmental Materials Management (pp. 1-28). Springer, Cham.
  • Sanchis, M.I.A., Saez, J., Llorens, M., Soler, A., Ortuno, J.F. (2003). Particle size distribution in slaughterhouse wastewater before and after coagulation-flocculation, Environmental Progress, 22, 183-188. doi:10.1002/ep.670220316
  • Sarika, R., Kalogerakis, N., Mantzavinos, D. (2005). Treatment of OME: Part II. Complete removal of solids by direct flocculation with poly-electrolytes, Recent Advances in Bioremediation, 31, 297-304. doi:10.1016/j.envint.2004.10.006
  • Su Kirliliği Kontrolü Yönetmeliği (2004). 24.05.2011 tarih ve 25687 sayılı Resmi Gazete, Orman ve Su İşleri Bakanlığı, Ankara.
  • TÜBİTAK MAM (2015). Zeytin Sektörü Atıklarının Yönetimi Projesi, Çevre ve Şehircilik Bakanlığı. https://webdosya.csb.gov.tr/db/zeytinay/webmenu/webmenu15702.pdf
  • Wang, F., Smith D.W., El-Din, M.G. (2006). Aged raw landfill leachate: Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis, Water Research, 40, 463-474. doi: 10.1016/j.watres.2005.11.038
  • Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N. (2011). Treatment of OMWW by the combination of ultrafiltration and bipolar electrochemical reactors, Chemical Engineering and Processing, 50, 37-41. doi: 10.1016/j.cep.2010.11.003
  • Yassine, W., Akazdam, S., Zyade, S., Gourich, B. (2018). Treatement of Olive Mill Wastewater Using Electrocoagulation Process. Journal of Applied Surfaces and Interfaces, 4(1-3).
  • Zhang, Z., Zhao, J., Xia, S., Liu, C., Kang, X. (2007). Particle size distribution and removal by a chemical-biological flocculation process, Journal of Environmental Science, 19, 559-563. doi: 10.1016/S1001-0742(07)60093-X
  • Zorpas, A. A. ve Costa, C. N. (2010). Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus, Bioresource Technology, 101, 7984-7987. doi: 10.1016/j.biortech.2010.05.030

KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

Yıl 2019, , 469 - 482, 31.12.2019
https://doi.org/10.17482/uumfd.524279

Öz

Bu deneysel çalışmada bir zeytinyağı karasuyu örneği (KOİ: 155000 mg/L; TOK: 40000; Toplam
fenol (T-Fenol): 4100 mg/L) kimyasal arıtma yöntemlerinden çöktürme, koagülasyon,
elektrokoagülasyon ve Fenton prosesi ile arıtmaya tabi tutulduktan sonra içeriğinde meydana gelen
değişim, dane boyut dağılımı (DBD) analizi uygulanarak incelenmiştir. Bu kapsamda ham ve arıtılmış
karasu örnekleri filtrasyon/ultrafiltrasyon temelli fiziksel ayırma prosedürü kullanılarak 1600, 450, 220,
13, 8, 5, 3, 2 ve 1 nm gözenek boyutlu filtrelerden geçirilmiştir. DBD analizlerinden elde edilen sonuçlara
göre ham karasu örneğinde KOİ, TOK, BOİ5 ve renk (absorbans) parametrelerini oluşturan bileşenlerin
daha çok partiküler boyut aralığında (>1600 nm; toplam KOİ’nin %54’ü, TOK’un %43’ü, BOİ5’in %43’ü
ve rengin %57’si), T-Fenol parametresini oluşturan bileşenlerin ise kolloidal boyut aralığında (2 nm-1600
nm; %54) dağıldığı gözlenmiştir. Çalışılan arıtma proseslerinden en yüksek giderim, faz transferi ile
giderim mekanizmasına dayanan koagülasyon ve çöktürme proseslerinden elde edilmiş (%55-60 KOİ,
%45-48 TOK ve %32 T-Fenol), öte yandan Fenton prosesinin karasuyun organik madde giderimi için
yeterli olmadığı tespit edilmiştir. Arıtma prosesleri sonrasında gerçekleşen giderimlerin KOİ-TOK
parametreleri için büyük oranda partiküler boyut aralığında, T-Fenol için partiküler ve kolloidal
aralıklarda dağıldığı bulunmuştur. 

Kaynakça

  • APHA/AWWA/WPCP (2005). Standard Methods for the Examination of Water and Wastewater, 21st edn, ed by Clesceri, L.S., Greenberg, A.E., Eaton, A.D. American Public Health Association, Washington, DC.
  • Amor, C., Marchão, L., Lucas, M. S., Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2), 205. doi.org/10.3390/w11020205
  • Azaizeh, H., Halahlih, F., Najami, N.,Brunner, D., Faulstich,M., Tafesh, A. (2012). Antioxidant activity of phenolic fractions in olive mill wastewater, Food Chemistry, 134, 2226–2234. doi: 10.1016/j.foodchem.2012.04.035
  • Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F., Ozer, A. (2004). A review of waste management options in olive oil production. Critical Reviews in Environmental Science and Technology, 34(3), 209-247. doi:10.1080/10643380490279932
  • Azbar, N., Keskin, T. ve Çatalkaya, E.C. (2008). Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems, Biochemical Engineering Journal, 38, 379-383. doi: 10.1016/j.bej.2007.08.005
  • Berthe, C., Redon, E. ve Feuillade, G. (2008). Fractionation of the Organic Matter Contained in Leachate Resulting from two Modes of Landfilling: An Indicator of Waste Degradation. Journal of Hazardous Materials, 154, 262–271. doi: 10.1016/j.jhazmat.2007.10.022
  • Box, J.D. (1983). Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters, Water Research, 17, 511-525. doi: 10.1016/0043-1354(84)90135-0
  • Doğruel, S., Ölmez-Hancı, T., Kartal, Z., Arslan-Alaton, I., Orhon, D. (2009). Effect of Fenton’s oxidation on the particle size distribution of organic carbon in OMW, Water Research, 43, 3874-3983. doi: 10.1016/j.watres.2009.06.017
  • Dülekgürgen, E., Doğruel, S., Orhon, D. (2007). Effect of chemical and biological treatment on COD fingerprints of textile wastewaters, Water Science and Technology, 55, 277-287. doi.org/10.2166/wst.2007.332
  • Domingues, E., Gomes, J., Quina, M., Quinta-Ferreira, R., Martins, R. (2018). Detoxification of Olive Mill Wastewaters by Fenton’s Process. Catalysts, 8(12), 662. doi: 10.3390/catal8120662
  • El-Abbassi, A., Kiai, H., Hafidi, A.(2012). Phenolic profile and antioxidant activities of olive mill wastewater, Food Chemistry, 132, 406–412. doi: 10.1016/j.foodchem.2011.11.013
  • El-Gohary, F.A., Badawy, M.I., El-Khateeb, M.A., El-Kalliny, A.S., (2009). Integrated treatment of omw by the combination of Fenton’s reaction and anaerobic treatment, Journal of Hazardous Materials, 162, 1536-1541. doi: 10.1016/j.jhazmat.2008.06.098
  • Emamjomeh, M.M., Sivakumar, M. (2009), Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, Journal of Environmental Management, 90, 1663-1679. doi: 10.1016/j.jenvman.2008.12.011
  • Garcia-Castello, E., Cassano, A., Criscuoli,A., Conidi,C. ve Drioli, E. (2010). Recovery and Concentration of Polyphenols from Olive Mill Wastewaters by Integrated Membrane System, Water Research, 44, 3883 – 3892. doi: 10.1016/j.watres.2010.05.005
  • Goncalves, M. R., Costa, J.C., Marques, I. P., Alves, M. M. (2012). Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater, Water Research, 46,1684-1692. doi: 10.1016/j.watres.2011.12.046
  • Gürsoy-Haksevenler, B. H., Arslan-Alaton, İ. (2012). Karasuyun koagülasyon, elektrokoagülasyon ve Fenton prosesleri ile kimyasal arıtılabilirliği, itüdergisi/e su kirlenmesi kontrolü, 22, 11-21.
  • Hanafi, F., Assobhei, O. ve Mountadar, M. (2010). Detoxification and Discoloration of Moroccan OMWW by Electrocoagulation, Journal of Hazardous Materials, 174, 807-812. doi: 10.1016/j.jhazmat.2009.09.124
  • Iamarino, G., Rao, M.A., Gianfreda, L. (2009). Dephenolization and detoxification of OMW by purified biotic and abiotic oxidative catalysts, Chemosphere, 74, 216–223. doi: 10.1016/j.chemosphere.2008.09.061
  • ISO 6060 (1986). Determination of the Chemical Oxygen Demand. International Standards Organization, 1st edn, Geneva, Switzerland.
  • ISO 11348-3 (1998). Water Quality-Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (luminescent bacteria test)-Part 3: Method Using Freeze-Dried Bacteria, ISO, Geneva.
  • Karahan, Ö., Doğruel, S., Dülekgürgen, E., Orhon, D. (2008). COD fractionation of tannery wastewaters - particle size distribution, biodegradability and modeling, Water Research, 42, 1083-1092.doi:10.1016/j.watres.2007.10.001
  • Kiril-Mert, B. ve Kestioğlu, K. (2008). The Research of membrane technology treatability in different industrial wastewaters, Journal of New World Sciences Academy, 3, 1-19.
  • Kiril-Mert, B., Yonar, T., Kılıç, M. ve Kestioğlu, K. (2010). Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes, Journal of Hazardous Materials, 174, 122–128. doi:10.1016/j.jhazmat.2009.09.025
  • Lee, Z. S., Chin, S. Y., Lim, J. W., Witoon, T., Cheng, C. K. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental technology & innovation, 100377. doi:10.1016/j.eti.2019.100377
  • Nieto, L.M. Hodaifa, G., Rodríguez, S., Giménez, J.A., Ochando, J.(2011). Degradation of organic matter in OMW through homogeneous Fenton-like reaction, Chemical Engineering Journal, 173, 503-510. doi:10.1016/j.cej.2011.08.022
  • Ölmez-Hancı, T., Dülekgürgen, E., Arslan-Alaton, İ., Orhon, D. (2008). Effect of chemical treatment on the aromatic carbon content and particle size distribution-based organic matter profile of OMW, Fresenius Environmental Bulletin, 17, 1790-1795.
  • Rharrabti, Y., Yamani, M. E. (2018). Olive Mill Wastewater: Treatment and Valorization Technologies. In Handbook of Environmental Materials Management (pp. 1-28). Springer, Cham.
  • Sanchis, M.I.A., Saez, J., Llorens, M., Soler, A., Ortuno, J.F. (2003). Particle size distribution in slaughterhouse wastewater before and after coagulation-flocculation, Environmental Progress, 22, 183-188. doi:10.1002/ep.670220316
  • Sarika, R., Kalogerakis, N., Mantzavinos, D. (2005). Treatment of OME: Part II. Complete removal of solids by direct flocculation with poly-electrolytes, Recent Advances in Bioremediation, 31, 297-304. doi:10.1016/j.envint.2004.10.006
  • Su Kirliliği Kontrolü Yönetmeliği (2004). 24.05.2011 tarih ve 25687 sayılı Resmi Gazete, Orman ve Su İşleri Bakanlığı, Ankara.
  • TÜBİTAK MAM (2015). Zeytin Sektörü Atıklarının Yönetimi Projesi, Çevre ve Şehircilik Bakanlığı. https://webdosya.csb.gov.tr/db/zeytinay/webmenu/webmenu15702.pdf
  • Wang, F., Smith D.W., El-Din, M.G. (2006). Aged raw landfill leachate: Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis, Water Research, 40, 463-474. doi: 10.1016/j.watres.2005.11.038
  • Yahiaoui, O., Lounici, H., Abdi, N., Drouiche, N., Ghaffour, N., Pauss, A., Mameri, N. (2011). Treatment of OMWW by the combination of ultrafiltration and bipolar electrochemical reactors, Chemical Engineering and Processing, 50, 37-41. doi: 10.1016/j.cep.2010.11.003
  • Yassine, W., Akazdam, S., Zyade, S., Gourich, B. (2018). Treatement of Olive Mill Wastewater Using Electrocoagulation Process. Journal of Applied Surfaces and Interfaces, 4(1-3).
  • Zhang, Z., Zhao, J., Xia, S., Liu, C., Kang, X. (2007). Particle size distribution and removal by a chemical-biological flocculation process, Journal of Environmental Science, 19, 559-563. doi: 10.1016/S1001-0742(07)60093-X
  • Zorpas, A. A. ve Costa, C. N. (2010). Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus, Bioresource Technology, 101, 7984-7987. doi: 10.1016/j.biortech.2010.05.030
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Betül Hande Gürsoy Haksevenler 0000-0003-3711-5058

Serdar Doğruel Bu kişi benim 0000-0003-4214-8436

İdil Arslan Alaton 0000-0003-4241-5100

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 8 Şubat 2019
Kabul Tarihi 25 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Gürsoy Haksevenler, B. H., Doğruel, S., & Arslan Alaton, İ. (2019). KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 469-482. https://doi.org/10.17482/uumfd.524279
AMA Gürsoy Haksevenler BH, Doğruel S, Arslan Alaton İ. KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. UUJFE. Aralık 2019;24(3):469-482. doi:10.17482/uumfd.524279
Chicago Gürsoy Haksevenler, Betül Hande, Serdar Doğruel, ve İdil Arslan Alaton. “KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 3 (Aralık 2019): 469-82. https://doi.org/10.17482/uumfd.524279.
EndNote Gürsoy Haksevenler BH, Doğruel S, Arslan Alaton İ (01 Aralık 2019) KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 469–482.
IEEE B. H. Gürsoy Haksevenler, S. Doğruel, ve İ. Arslan Alaton, “KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”, UUJFE, c. 24, sy. 3, ss. 469–482, 2019, doi: 10.17482/uumfd.524279.
ISNAD Gürsoy Haksevenler, Betül Hande vd. “KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (Aralık 2019), 469-482. https://doi.org/10.17482/uumfd.524279.
JAMA Gürsoy Haksevenler BH, Doğruel S, Arslan Alaton İ. KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. UUJFE. 2019;24:469–482.
MLA Gürsoy Haksevenler, Betül Hande vd. “KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 3, 2019, ss. 469-82, doi:10.17482/uumfd.524279.
Vancouver Gürsoy Haksevenler BH, Doğruel S, Arslan Alaton İ. KİMYASAL ARITMA PROSESLERİNİN KARASUYUN BOYUTSAL DAĞILIMI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ. UUJFE. 2019;24(3):469-82.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr