Araştırma Makalesi
BibTex RIS Kaynak Göster

Çatlak Başlangıç Açısının Rüzgar Türbinlerindeki İnce Rimli Dişlilerin Çatlak İlerleme Yoluna Etkileri

Yıl 2020, , 217 - 230, 30.04.2020
https://doi.org/10.17482/uumfd.663845

Öz

Günümüzde, rüzgar türbinleri, yenilenebilir enerji kaynaklarına gittikçe artan ilgi nedeniyle dişli tasarımcılarının ana konularından birisi haline gelmiştir. Dişli sistemine etki eden dinamik yükler nedeniyle, dişli dişlerinde çatlaklar oluşabilir. Bu çatlaklar diş veya rim boyunca ilerleyebilir. Benzer durumlarda; çatlak diş boyunca ilerliyorsa, çatlak iyi huylu olarak sınıflandırılır. Çatlak rim boyunca ilerliyor ise; bu tip çatlaklar yıkıcı çatlaklar olarak sınıflandırılabilir. Bu çalışmada, düz dişli çarklarda çatlak başlangıç açısı ve rim oranının çatlak ilerleme yolu üzerindeki etkileri nümerik olarak incelenmiştir. Diş kökündeki maksimum gerilme yeri, çatlak başlangıç noktası olarak tanımlanmıştır. İlk çatlaklar, 0 ° - 45 ° - ve 90 ° çatlak başlangıç açıları ile açılmıştır. Ayrıca, çatlak ilerleme analizi için beş farklı rim oranı kullanılmıştır. Çatlak ilerleme analizleri ANSYS Workbench, SMART Crack Growth modülünde gerçekleştirilmiştir. Çatlak ilerleme yolları on beş analiz ile değerlendirilmiştir.
Sonuç olarak, rim kalınlığı büyük ise, çatlak başlangıç açısının çatlak ilerleme yolları üzerinde bir etkisinin olmadığı görülmüştür. Çatlak başlangıç açısının özel bir rim kalınlığı için çatlak ilerleme yolları üzerinde bir etkisi olduğu tespit edilmiştir.

Kaynakça

  • 1. Doğan, O. and Karpat, F. (2019). Crack detection for spur gears with asymmetric teeth based on dynamic transmission error, Mechanism and Machine Theory, 133, 417 – 433. https://doi.org/10.1016/j.mechmachtheory.2018.11.026.
  • 2. Eriki, A.K., Ravichandra, R. and Mustaffa, M.E. (2012). Spur gear crack propagation path analysis using finite element method, International Multi Conference of Engineers and Computer Scientists, Hong Kong.
  • 3. Fajdiga, G. and Sraml, M. (2009). Fatigue crack initiation and propagation under cyclic contact loading, Engineering Fracture Mechanics, 76(9), 1320 – 1335. https://doi.org/10.1016/j.engfracmech.2009.02.005.
  • 4. Gunay, D., Ozer, H. and Aydemir, A. (1997). Effect of rim thickness on the root stresses of spur gear tooth, Pamukkale University Engineering College Journal of Engineering Sciences, 3(1), 299-304 (in Turkish).
  • 5. Jadhav, P.B. and Choudhary, Y.B. (2016). Spur gear crack propagation path analysis and its effect on gear mesh stiffness, International Journal of Advance Research in Science and Engineering, 5(2), 500 – 509.
  • 6. Kramberger, J., Sraml, M., Potrc, I., Flasker, J. (2004). Numerical calculation of bending fatigue life of thin-rim spur gears, Engineering Fracture Mechanics, 71(4-6), 647 – 656. https://doi.org/10.1016/S0013-7944(03)00024-9.s.
  • 7. Lesiuk, G., Duda, M.M., Correia, J., de Jesus, A.M.P., Calcada, R. (2018). Fatigue crack growth of 42CrMo4 and 41Cr4 steels under different heat treatment conditions, International Journal of Structural Integrity, 9(3), 326 – 336. https://doi.org/10.1108/IJSI-01-2018-0003.
  • 8. Lewicki, D.G. (1995). Crack propagation studies to determine benign or catastrophic failure modes for aerospace thin-rim gears, Ph.D. Thesis, Case Western Reserve University.
  • 9. Lewicki, D.G. and Ballarini, R. (1997). Rim thickness effects on gear crack propagation life, International Journal of Fracture, 87(1), 59 – 86. https://doi.org/10.1023/A:1007368801853.
  • 10. Lewicki, D.G. (2001). Effect of speed (centrifugal load) on gear crack propagation direction, NASA/TM-2001-211117, 1 – 6.
  • 11. Mohammed, O.D., Rantatalo, M. and Kumar, U. (2012). Analytical crack propagation scenario for gear teeth and time-varying gear mesh stiffness, International Journal of Aerospace and Mechanical Engineering, 6(8), 1544 – 1549. http://doi.org/10.5281/zenodo.1070089.
  • 12. Ozer, H. and Gunay, D. (2001). The effect of addendum modification coefficient on crack propagation path at addendum modificated gears, Journal of Mechanical Design and Production, 4(2), 89 – 95 (in Turkish).
  • 13. Pandya, Y. and Parey, A. (2013). Simulation of crack propagation in spur gear teeth for different gear parameter and its influence on mesh stiffness, Engineering Failure Analysis, 30, 124 – 137. https://doi.org/10.1016/j.engfailanal.2013.01.011.
  • 14. Saxena, A., Parey, A. and Chouksey, M. (2016). Effect of gear tooth faults on time varying mesh stiffness of spur gear pair, International Journal of Condition Monitoring and Diagnostic Engineering Management, 19(1), 17 – 21.
  • 15. Zhao, L.C. ve Shao, F.M. (1997). Optimization of connecting two communication networks subject to reliability constraint, Microelectronics and Reliability, 37(4), 629-633.doi:11.3267/2553/8911.324.260

EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES

Yıl 2020, , 217 - 230, 30.04.2020
https://doi.org/10.17482/uumfd.663845

Öz

Nowadays, wind turbines are one of the main subjects of the designers due to the ever-increasing interest in renewable energy sources. Due to dynamic loads that effect the gear system, cracks may observe on the gear teeth. These cracks may proceed along either the tooth or the rim. In similar cases, if the crack proceeds along with the tooth, crack classified as benign. If the crack proceeds along with the rim direction, the cracks can be classified as catastrophic cracks. In this study, the effects of crack initialization angle and backup ratio on the crack propagation path are investigated numerically for spur gears. The maximum stress location at the gear root is defined as the crack starting point. The initial cracks are opened with 0° - 45° - and 90° crack initialization angles. Also, five different backup ratios are used for crack propagation analysis. The analyses are performed in ANSYS Workbench, SMART Crack Growth module. The crack propagation paths are evaluated for fifteen analyses. As a result, if the rim thickness is high, the crack initialization angle has no effects on the crack paths. It has an influence on the crack propagation paths for the special rim thickness.

Kaynakça

  • 1. Doğan, O. and Karpat, F. (2019). Crack detection for spur gears with asymmetric teeth based on dynamic transmission error, Mechanism and Machine Theory, 133, 417 – 433. https://doi.org/10.1016/j.mechmachtheory.2018.11.026.
  • 2. Eriki, A.K., Ravichandra, R. and Mustaffa, M.E. (2012). Spur gear crack propagation path analysis using finite element method, International Multi Conference of Engineers and Computer Scientists, Hong Kong.
  • 3. Fajdiga, G. and Sraml, M. (2009). Fatigue crack initiation and propagation under cyclic contact loading, Engineering Fracture Mechanics, 76(9), 1320 – 1335. https://doi.org/10.1016/j.engfracmech.2009.02.005.
  • 4. Gunay, D., Ozer, H. and Aydemir, A. (1997). Effect of rim thickness on the root stresses of spur gear tooth, Pamukkale University Engineering College Journal of Engineering Sciences, 3(1), 299-304 (in Turkish).
  • 5. Jadhav, P.B. and Choudhary, Y.B. (2016). Spur gear crack propagation path analysis and its effect on gear mesh stiffness, International Journal of Advance Research in Science and Engineering, 5(2), 500 – 509.
  • 6. Kramberger, J., Sraml, M., Potrc, I., Flasker, J. (2004). Numerical calculation of bending fatigue life of thin-rim spur gears, Engineering Fracture Mechanics, 71(4-6), 647 – 656. https://doi.org/10.1016/S0013-7944(03)00024-9.s.
  • 7. Lesiuk, G., Duda, M.M., Correia, J., de Jesus, A.M.P., Calcada, R. (2018). Fatigue crack growth of 42CrMo4 and 41Cr4 steels under different heat treatment conditions, International Journal of Structural Integrity, 9(3), 326 – 336. https://doi.org/10.1108/IJSI-01-2018-0003.
  • 8. Lewicki, D.G. (1995). Crack propagation studies to determine benign or catastrophic failure modes for aerospace thin-rim gears, Ph.D. Thesis, Case Western Reserve University.
  • 9. Lewicki, D.G. and Ballarini, R. (1997). Rim thickness effects on gear crack propagation life, International Journal of Fracture, 87(1), 59 – 86. https://doi.org/10.1023/A:1007368801853.
  • 10. Lewicki, D.G. (2001). Effect of speed (centrifugal load) on gear crack propagation direction, NASA/TM-2001-211117, 1 – 6.
  • 11. Mohammed, O.D., Rantatalo, M. and Kumar, U. (2012). Analytical crack propagation scenario for gear teeth and time-varying gear mesh stiffness, International Journal of Aerospace and Mechanical Engineering, 6(8), 1544 – 1549. http://doi.org/10.5281/zenodo.1070089.
  • 12. Ozer, H. and Gunay, D. (2001). The effect of addendum modification coefficient on crack propagation path at addendum modificated gears, Journal of Mechanical Design and Production, 4(2), 89 – 95 (in Turkish).
  • 13. Pandya, Y. and Parey, A. (2013). Simulation of crack propagation in spur gear teeth for different gear parameter and its influence on mesh stiffness, Engineering Failure Analysis, 30, 124 – 137. https://doi.org/10.1016/j.engfailanal.2013.01.011.
  • 14. Saxena, A., Parey, A. and Chouksey, M. (2016). Effect of gear tooth faults on time varying mesh stiffness of spur gear pair, International Journal of Condition Monitoring and Diagnostic Engineering Management, 19(1), 17 – 21.
  • 15. Zhao, L.C. ve Shao, F.M. (1997). Optimization of connecting two communication networks subject to reliability constraint, Microelectronics and Reliability, 37(4), 629-633.doi:11.3267/2553/8911.324.260
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Oğuz Doğan 0000-0003-4203-8237

Onur Kalay 0000-0001-8643-6910

Fatih Karpat 0000-0001-8474-7328

Yayımlanma Tarihi 30 Nisan 2020
Gönderilme Tarihi 23 Aralık 2019
Kabul Tarihi 29 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Doğan, O., Kalay, O., & Karpat, F. (2020). EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 217-230. https://doi.org/10.17482/uumfd.663845
AMA Doğan O, Kalay O, Karpat F. EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES. UUJFE. Nisan 2020;25(1):217-230. doi:10.17482/uumfd.663845
Chicago Doğan, Oğuz, Onur Kalay, ve Fatih Karpat. “EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 1 (Nisan 2020): 217-30. https://doi.org/10.17482/uumfd.663845.
EndNote Doğan O, Kalay O, Karpat F (01 Nisan 2020) EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 217–230.
IEEE O. Doğan, O. Kalay, ve F. Karpat, “EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES”, UUJFE, c. 25, sy. 1, ss. 217–230, 2020, doi: 10.17482/uumfd.663845.
ISNAD Doğan, Oğuz vd. “EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (Nisan 2020), 217-230. https://doi.org/10.17482/uumfd.663845.
JAMA Doğan O, Kalay O, Karpat F. EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES. UUJFE. 2020;25:217–230.
MLA Doğan, Oğuz vd. “EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 1, 2020, ss. 217-30, doi:10.17482/uumfd.663845.
Vancouver Doğan O, Kalay O, Karpat F. EFFECTS OF CRACK INITIALIZATION ANGLE ON CRACK PROPAGATION PATH OF THIN RIM GEARS FOR WIND TURBINES. UUJFE. 2020;25(1):217-30.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr