Araştırma Makalesi
BibTex RIS Kaynak Göster

Yarı-Rijit Bağlı Prefabrik Endüstriyel Binaların Deprem Performansının Değerlendirilmesi

Yıl 2020, , 247 - 268, 30.04.2020
https://doi.org/10.17482/uumfd.670347

Öz

Bu çalışmada, İstanbul'da bir sanayi bölgesinde beş farklı tipten oluşan 120 adet prefabrik fabrika binasının performansları güçlendirme yöntemlerinin uygulanmasından önce ve sonra, zaman tanım alanında doğrusal olmayan analizler ile incelenmiştir. Fabrika binaları 1999 Kocaeli depreminden önce inşa edilmiş ve çeşit endüstrilerde faaliyete geçmiştir. Kocaeli depreminin ardından binalar işletme açısından güvenli kabul edilmiş, ancak 1998 Türk Deprem Yönetmeliği (TDY) koşulları açısından değerlendirildikten sonra kiriş-kolon bağlantılarının çoğunun yetersiz kaldığı tespit edilmiştir. Binalar 2005 yılında birleşim bölgelerinde bulonlu çelik levhalar ve yapı genelinde diyagonal çelik çubuklar kullanılarak güçlendirilmiştir. Bu çalışmada farklı güçlendirme yöntemlerinin uygulanmasından önce ve sonra kiriş-kolon bağlantı bölgesinin detaylı bir sonlu eleman modeli geliştirilmiş ve bölgenin davranışı yapıların üç boyutlu modellerinde dikkate alınmıştır. Türk Deprem Yönetmeliği 2007 kurallarına uygun olarak fabrika binaları analiz edilmiştir. Güçlendirme tekniklerinin ve genel plan boyutlarının performans seviyeleri üzerindeki etkileri tespit edilmiştir. Analizler sonucunda, TDY 2007 kriterlerine göre hasar gören kiriş elemanları sayısı FEMA-356 koşullarına göre hesaplanan elemanlardan daha fazla bulunmuştur. Yapıların üç boyutlu performans analizlerinde, birleşim bölgelerinin detaylı incelenmesi ve tüm yapı modeline davranışın aktarılması gerektiğinin önemi vurgulanmıştır. Yapıların boyuna doğrultuda düzlem çerçeveler arası uzunluğunun ve kısa doğrultudaki kiriş uzunluklarının azaltılması ile yapı performansının arttığı görülmüştür.

Kaynakça

  • 1. ACI-318, (1995). Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA.
  • 2. Adalier, K. and Aydingun, O. (2001) Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake, Engineering Structures, 23(4), 343-355. doi: 10.1016/S0141-0296(00)00046-8
  • 3. Arslan, M. H., Korkmaz, H. and Gulay, F. G. (2006) Damage and failure pattern of prefabricated structures after mojor earthquakes in Turkey and shortfalls of the Turkish Earthquake code, Engineering Failure Analysis, 13(4), 537-557. doi: 10.1016/j.engfailanal.2005.02.006
  • 4. ATC-40, (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, California, USA.
  • 5. Baysal, M. Z. (1991). Behavior of an exterior precast beam-column joint under reversed cyclic loading, Yüksek Lisans Tezi, O.D.T. Ü. Fen Bilimleri Enstitüsü, Ankara.
  • 6. Belleri, A., Torquati M., Riva, P. and Nascimbene, R. (2015) Vulnerability assessment and retrofit solutions of precast industrial structures, Earthquakes and Structures, 8(3), 801-820. doi: 10.12989/eas.2015.8.3.801
  • 7. Bournas, D. A., Negro, P. and Molina, F. J. (2013) Pseudodynamic tests on a full-scale 3- storey precast concrete buildings: behavior of the mechanical connections and floor diaphragms, Engineering Structures, 57, 609-627. doi: 10.1016/j.engstruct.2013.05.046
  • 8. Bournas, D. A., Negro, P. and Taucer, F. F. (2014) Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening, Bulletin Earthquake Engineering, 12(5), 2383-2404. doi: 10.1007/s10518-013-9466-z
  • 9. BSSC, (2001). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Part 1—Provisions, Part 2—Commentary Report Nos. FEMA-368 and FEMA-369, Building Seismic Safety Council; Federal Emergency Management Agency, Washington, D.C., USA.
  • 10. Center for Engineering Strong Motion Data, Access Address: ftp://strongmotioncenter.org/vdc/turkey (Access Data: 07.08.2015)
  • 11. CSI (2018) SAP2000 V-15.1: Structural analysis program, Computers and Structures Inc., Berkeley, California.
  • 12. Earthquake Research Department of General Director of Disaster Affairs, Access Address: http://www.deprem.gov.tr (Access Data: 01.08.2015)
  • 13. EERI (2000) 1999 Kocaeli, Turkey, Earthquake Reconnaissance Report, Earthquake Spectra, Supplement A to Vol. 16, Earthquake Engineering Research Institute.
  • 14. Elliot, K.S., Davies, G., Gorgun, H. and Adlparvar, M. R. (1998) The stability of precast concrete skeletal structure, PCI Journal, 43, 42-57.
  • 15. Englekirk, R. E. (2003) Seismic Design of Reinforced and Precast Concrete Buildings, John Wiley Sons, New York.
  • 16. Ersoy, U. and Tankut, T. (1993) Precast concrete members with welded plate connections under reversed cyclic loading, PCI Journal, 38(4), 94–100.
  • 17. FEMA-356, (2000). Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, USA.
  • 18. FEMA-440, (2005). Improvement of Nonlinear Static Seismic Analysis Procedures, Federal Emergency Management Agency, Washington, USA.
  • 19. Fib Bulletin 27, (2003). Seismic design of precast concrete structures, International Federation for Structural Concrete, Lausanne, Switzerland.
  • 20. Hibbitt, Karlsson, and Sorensen. (2015) ABAQUS/standard user's manual. HKS Inc., Dallas, USA.
  • 21. Mander, J. B., Priestley, M.J. and Park, R. (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, 114(8), 1804-1826.
  • 22. Negro, P., Bournas, D. and Molina, F. J. (2013) Pseudodynamic tests on a full-scale 3-storey precast concrete building: global response, Engineering Structures, 57, 596–608. doi: 10.1016/j.engstruct.2013.05.047
  • 23. Nzabonimpa, J. D., Hong, W. K. and Kim J. (2017) Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames, Computers and Structures, 189, 31-48. doi: 10.1016/j.compstruc.2017.04.016
  • 24. Nzabonimpa, J. D., Hong, W. K. and Park, S. C. (2017) Experimental investigation of dry mechanical beam–column joints for precast concrete based frames, The Structural Design of Tall and Special Buildings, 26(1). doi: 10.1002/tal.1302
  • 25. Oztug, A, C. (1994). Seismic performance and improvement of an external precast concrete connection, Yüksek Lisans Tezi, O.D.T. Ü. Fen Bilimleri Enstitüsü, Ankara.
  • 26. Posada, M. and Wood, S.L., 2002, Seismic Performance of Precast Industrial Buildings in Turkey, Proceedings, 7th U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, Paper 543.
  • 27. Priestley, M.J.N., Sritharan, S., Conley, J. R. and Pampanin, S. (1999) Preliminary results and conclusions from the PRESS five-story precast concrete test building, PCI Journal, 44, 42- 67.
  • 28. Saatcioglu, M., Mitchell, D., Tinawi, R., Gardner, J., Gillies, A., Ghobarah, A., Anderson, D. L. and Lau, D. (2001) The August 17, 1999 Kocaeli (Turkey) earthquake-damage to structures, Canadian Journal of Civil Engineering, 28(4), 715-773. doi: 10.1139/cjce-28-4- 715
  • 29. Sezen, H. and Whittaker, A. S. (2006) Seismic performance of industrial facilities affected by the 1999 Turkey earthquake, Journal of Performance of Constructed Facilities, 20, 28-39. doi: 10.1061/(ASCE)0887-3828(2006)20:1(28)
  • 30. TEC, (1998). Specifications for structures to be built in disaster areas, Ministry of Public Works and Settlement, Ankara, Turkey.
  • 31. TEC, (2007). Specifications for structures to be built in seismic areas, Ministry of Public Works and Settlement, Ankara, Turkey.
  • 32. TS-498, (1997). Design loads for buildings, Turkish Standards, Ankara, Turkey (in Turkish). 33. Vasconez, R.M., Naaman A. E. and Wight, J. K. (1998) Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading, PCI Journal, 43, 58-71.
  • 33. Vasconez, R.M., Naaman A. E. and Wight, J. K. (1998) Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading, PCI Journal, 43, 58-71.
  • 34. Vidjeapriya, R. and Jaya, K. P. (2013) Experimental study on two simple mechanical precast beam-column connections under reverse cyclic loading, Journal of Performance of Constructed Facilities, 27(4), 402-414. doi: 10.1061/(ASCE)CF.1943-5509.0000324
  • 35. Wood, S. L. (2003) Seismic Rehabilitation of Low-Rise Precast Industrial Buildings in Turkey, Advances in Earthquake Engineering for Urban Risk Reduction, Nato Science Series: IV: Earth and Environmental Sciences, 66, 167-177.
  • 36. XTRACT (2004). Cross-sectional analysis of structural components. Imbsen and Associates Inc., Sacramento.
  • 37. Xue, W. and Yang, X. (2010) Seismic tests of precast concrete, moment-resisting frames and connections, PCI Journal, 55, 102-121.
  • 38. Yee P. T. L., Adnan A. B., Mirasa A. K. and Abdul Rahman, A. B. (2011) Performance of IBS precast concrete beam-column connections under earthquake effects: A literature review, American Journal of Engineering and Applied Sciences, 4(1), 93-101. doi: 10.3844/ajeassp.2011.93.101
  • 39. Yuksel, E., Karadogan, H. F., Bal, İ. E., Ilki, A., Bal, A., and Inci, P. (2015) Seismic behavior of two exterior beam-column connections made of normal-strength concrete developed for precast construction, Engineering Structures, 99, 157–172. doi: 10.1016/j.engstruct.2015.04.044

SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS

Yıl 2020, , 247 - 268, 30.04.2020
https://doi.org/10.17482/uumfd.670347

Öz

In this study, the performances of 120 precast factory buildings consisting of five different types in an industrial area in Istanbul, Turkey are examined before and after the applications of retrofit methods through nonlinear time history analyses. The factory buildings were constructed and became operational before the 1999 Kocaeli earthquake. Following the earthquake, they were operationally safe, however, after the evaluation according to the 1998 Turkish Earthquake Code (TEC), most of the connections were found to be inadequate. The buildings were retrofitted by using bolted steel plates in the connection regions and diagonal steel braces in 2005. A detailed finite element model of the connection was developed before and after the retrofit methods and the behavior of the region was implemented in the three-dimensional models of the structures. The buildings were analyzed according to the Turkish Earthquake Code 2007. The number of damaged beams by the TEC-2007 was higher than the rate of damaged beams per the FEMA-356. In three-dimensional performance analysis of buildings, the importance of examination of connection regions and implementing the results to the full building model were emphasized. The performance of the building were increased by reducing the distance between the plane frames in the longitudinal direction and the beam length in the transverse direction.

Kaynakça

  • 1. ACI-318, (1995). Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA.
  • 2. Adalier, K. and Aydingun, O. (2001) Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake, Engineering Structures, 23(4), 343-355. doi: 10.1016/S0141-0296(00)00046-8
  • 3. Arslan, M. H., Korkmaz, H. and Gulay, F. G. (2006) Damage and failure pattern of prefabricated structures after mojor earthquakes in Turkey and shortfalls of the Turkish Earthquake code, Engineering Failure Analysis, 13(4), 537-557. doi: 10.1016/j.engfailanal.2005.02.006
  • 4. ATC-40, (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, California, USA.
  • 5. Baysal, M. Z. (1991). Behavior of an exterior precast beam-column joint under reversed cyclic loading, Yüksek Lisans Tezi, O.D.T. Ü. Fen Bilimleri Enstitüsü, Ankara.
  • 6. Belleri, A., Torquati M., Riva, P. and Nascimbene, R. (2015) Vulnerability assessment and retrofit solutions of precast industrial structures, Earthquakes and Structures, 8(3), 801-820. doi: 10.12989/eas.2015.8.3.801
  • 7. Bournas, D. A., Negro, P. and Molina, F. J. (2013) Pseudodynamic tests on a full-scale 3- storey precast concrete buildings: behavior of the mechanical connections and floor diaphragms, Engineering Structures, 57, 609-627. doi: 10.1016/j.engstruct.2013.05.046
  • 8. Bournas, D. A., Negro, P. and Taucer, F. F. (2014) Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening, Bulletin Earthquake Engineering, 12(5), 2383-2404. doi: 10.1007/s10518-013-9466-z
  • 9. BSSC, (2001). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Part 1—Provisions, Part 2—Commentary Report Nos. FEMA-368 and FEMA-369, Building Seismic Safety Council; Federal Emergency Management Agency, Washington, D.C., USA.
  • 10. Center for Engineering Strong Motion Data, Access Address: ftp://strongmotioncenter.org/vdc/turkey (Access Data: 07.08.2015)
  • 11. CSI (2018) SAP2000 V-15.1: Structural analysis program, Computers and Structures Inc., Berkeley, California.
  • 12. Earthquake Research Department of General Director of Disaster Affairs, Access Address: http://www.deprem.gov.tr (Access Data: 01.08.2015)
  • 13. EERI (2000) 1999 Kocaeli, Turkey, Earthquake Reconnaissance Report, Earthquake Spectra, Supplement A to Vol. 16, Earthquake Engineering Research Institute.
  • 14. Elliot, K.S., Davies, G., Gorgun, H. and Adlparvar, M. R. (1998) The stability of precast concrete skeletal structure, PCI Journal, 43, 42-57.
  • 15. Englekirk, R. E. (2003) Seismic Design of Reinforced and Precast Concrete Buildings, John Wiley Sons, New York.
  • 16. Ersoy, U. and Tankut, T. (1993) Precast concrete members with welded plate connections under reversed cyclic loading, PCI Journal, 38(4), 94–100.
  • 17. FEMA-356, (2000). Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, USA.
  • 18. FEMA-440, (2005). Improvement of Nonlinear Static Seismic Analysis Procedures, Federal Emergency Management Agency, Washington, USA.
  • 19. Fib Bulletin 27, (2003). Seismic design of precast concrete structures, International Federation for Structural Concrete, Lausanne, Switzerland.
  • 20. Hibbitt, Karlsson, and Sorensen. (2015) ABAQUS/standard user's manual. HKS Inc., Dallas, USA.
  • 21. Mander, J. B., Priestley, M.J. and Park, R. (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, 114(8), 1804-1826.
  • 22. Negro, P., Bournas, D. and Molina, F. J. (2013) Pseudodynamic tests on a full-scale 3-storey precast concrete building: global response, Engineering Structures, 57, 596–608. doi: 10.1016/j.engstruct.2013.05.047
  • 23. Nzabonimpa, J. D., Hong, W. K. and Kim J. (2017) Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames, Computers and Structures, 189, 31-48. doi: 10.1016/j.compstruc.2017.04.016
  • 24. Nzabonimpa, J. D., Hong, W. K. and Park, S. C. (2017) Experimental investigation of dry mechanical beam–column joints for precast concrete based frames, The Structural Design of Tall and Special Buildings, 26(1). doi: 10.1002/tal.1302
  • 25. Oztug, A, C. (1994). Seismic performance and improvement of an external precast concrete connection, Yüksek Lisans Tezi, O.D.T. Ü. Fen Bilimleri Enstitüsü, Ankara.
  • 26. Posada, M. and Wood, S.L., 2002, Seismic Performance of Precast Industrial Buildings in Turkey, Proceedings, 7th U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, Paper 543.
  • 27. Priestley, M.J.N., Sritharan, S., Conley, J. R. and Pampanin, S. (1999) Preliminary results and conclusions from the PRESS five-story precast concrete test building, PCI Journal, 44, 42- 67.
  • 28. Saatcioglu, M., Mitchell, D., Tinawi, R., Gardner, J., Gillies, A., Ghobarah, A., Anderson, D. L. and Lau, D. (2001) The August 17, 1999 Kocaeli (Turkey) earthquake-damage to structures, Canadian Journal of Civil Engineering, 28(4), 715-773. doi: 10.1139/cjce-28-4- 715
  • 29. Sezen, H. and Whittaker, A. S. (2006) Seismic performance of industrial facilities affected by the 1999 Turkey earthquake, Journal of Performance of Constructed Facilities, 20, 28-39. doi: 10.1061/(ASCE)0887-3828(2006)20:1(28)
  • 30. TEC, (1998). Specifications for structures to be built in disaster areas, Ministry of Public Works and Settlement, Ankara, Turkey.
  • 31. TEC, (2007). Specifications for structures to be built in seismic areas, Ministry of Public Works and Settlement, Ankara, Turkey.
  • 32. TS-498, (1997). Design loads for buildings, Turkish Standards, Ankara, Turkey (in Turkish). 33. Vasconez, R.M., Naaman A. E. and Wight, J. K. (1998) Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading, PCI Journal, 43, 58-71.
  • 33. Vasconez, R.M., Naaman A. E. and Wight, J. K. (1998) Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading, PCI Journal, 43, 58-71.
  • 34. Vidjeapriya, R. and Jaya, K. P. (2013) Experimental study on two simple mechanical precast beam-column connections under reverse cyclic loading, Journal of Performance of Constructed Facilities, 27(4), 402-414. doi: 10.1061/(ASCE)CF.1943-5509.0000324
  • 35. Wood, S. L. (2003) Seismic Rehabilitation of Low-Rise Precast Industrial Buildings in Turkey, Advances in Earthquake Engineering for Urban Risk Reduction, Nato Science Series: IV: Earth and Environmental Sciences, 66, 167-177.
  • 36. XTRACT (2004). Cross-sectional analysis of structural components. Imbsen and Associates Inc., Sacramento.
  • 37. Xue, W. and Yang, X. (2010) Seismic tests of precast concrete, moment-resisting frames and connections, PCI Journal, 55, 102-121.
  • 38. Yee P. T. L., Adnan A. B., Mirasa A. K. and Abdul Rahman, A. B. (2011) Performance of IBS precast concrete beam-column connections under earthquake effects: A literature review, American Journal of Engineering and Applied Sciences, 4(1), 93-101. doi: 10.3844/ajeassp.2011.93.101
  • 39. Yuksel, E., Karadogan, H. F., Bal, İ. E., Ilki, A., Bal, A., and Inci, P. (2015) Seismic behavior of two exterior beam-column connections made of normal-strength concrete developed for precast construction, Engineering Structures, 99, 157–172. doi: 10.1016/j.engstruct.2015.04.044
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Fırat Alemdar 0000-0002-0793-8582

Yayımlanma Tarihi 30 Nisan 2020
Gönderilme Tarihi 4 Ocak 2020
Kabul Tarihi 28 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Fırat Alemdar, Z. (2020). SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 247-268. https://doi.org/10.17482/uumfd.670347
AMA Fırat Alemdar Z. SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS. UUJFE. Nisan 2020;25(1):247-268. doi:10.17482/uumfd.670347
Chicago Fırat Alemdar, Zeynep. “SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 1 (Nisan 2020): 247-68. https://doi.org/10.17482/uumfd.670347.
EndNote Fırat Alemdar Z (01 Nisan 2020) SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 247–268.
IEEE Z. Fırat Alemdar, “SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS”, UUJFE, c. 25, sy. 1, ss. 247–268, 2020, doi: 10.17482/uumfd.670347.
ISNAD Fırat Alemdar, Zeynep. “SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (Nisan 2020), 247-268. https://doi.org/10.17482/uumfd.670347.
JAMA Fırat Alemdar Z. SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS. UUJFE. 2020;25:247–268.
MLA Fırat Alemdar, Zeynep. “SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 1, 2020, ss. 247-68, doi:10.17482/uumfd.670347.
Vancouver Fırat Alemdar Z. SEISMIC PERFORMANCE ASSESSMENT OF PREFABRICATED INDUSTRIAL BUILDINGS WITH SEMI-RIGID CONNECTIONS. UUJFE. 2020;25(1):247-68.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr