Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of Iron(III) Ions from Aqueous Solutions by Black Cumin Seed Cakes

Yıl 2020, , 961 - 980, 31.08.2020
https://doi.org/10.17482/uumfd.715236

Öz

Black cumin seed cakes were used as an adsorbent to remove Fe (III) ions from aqueous solutions. The effects of the initial pH, temperature, contact time, and the amount of adsorbent on the adsorption efficiency were investigated experimentally using the batch method. At pH 4, it was found that Fe (III) ions were removed by the adsorbent with high efficiency. The relationship between adsorbent amount and removal efficiency was examined and the highest removal efficiency was obtained for 10 mg adsorbent amount. Adsorption isotherm models (Langmuir, Freundlich and Dubinin-Radushkevic) were applied and the adsorption was found to fit the Langmuir isotherm model. As a result of thermodynamic studies, it has been understood that adsorption is exothermic, favorable, and spontaneous. Adsorption was found to fit the pseudo second-order kinetic model. Regeneration and characterization studies of adsorbent have been done.

Kaynakça

  • Ahalya, N., Kanamadi, R.D., Ramachandra, T.V. (2006) Biosorption of iron(III) from aqueous solutions using the husk of Cicer arientinum, Indian Journal of Chemical Technology, 13, 122–127. http://op.niscair.res.in/index.php/IJCT
  • Ajmal, M., Rao, R.A.K., Khan, M.A. (2005) Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake), Journal of Hazardous Materials, B122, 177–183. doi:10.1016/j.jhazmat.2005.03.029
  • Aksu, Z., Tezer, S. (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochemistry, 40, 1347–1361. doi: 10.1016/j.procbio.2004.06.007
  • Al-Anber, Z.A., Al-Anber, M.A.S. (2008) Thermodynamics and kinetic studies of iron(III) adsorption by olive cake in a batch system, Journal of the Mexican Chemical Society, 52, 108–115. https://www.jmcs.org.mx/index.php/jmcs
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production, 142, 3809–3821. doi: 10.1016/j.jclepro.2016.10.08
  • Benaisa, S., Arhoun, B., El Mail, R., Rodriguez-Maroto, J.M. (2018) Potential of brown algae biomass as new biosorbent of Iron: Kinetic, equilibrium and thermodynamic study, Journal of Materials and Environmental Science, 9, 2131–2141. https://www.jmaterenvironsci.com/
  • Bhattacharyya, K.G., Gupta, S. Sen, 2006. Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12, 185–204. doi: 10.1007/s10450-006-0145-0
  • bin Jusoh, A., Cheng, W.H., Low, W.M., Nora’aini, A., Megat Mohd Noor, M.J. (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, 182, 347–353. doi: 10.1016/j.desal.2005.03.022
  • Cardoso, N.F., Lima, E.C., Royer, B., Bach, M. V., Dotto, G.L., Pinto, L.A.A., Calvete, T. (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents, Journal of Hazardous Materials, 241–242, 146–153. doi: 10.1016/j.jhazmat.2012.09.026
  • Černá, M. (1995) Use of solvent extraction for the removal of heavy metals from liquid wastes. Environmental Monitoring and Assessment, 34, 151–162. doi: 10.1007/bf00546029
  • Chen, Q., Luo, Z., Hills, C., Xue, G., Tyrer, M. (2009) Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43, 2605–2614. doi: 10.1016/j.watres.2009.03.007
  • Da̧browski, A. (2001) Adsorption - From theory to practice, Advances in Colloid and Interface Science, 93, 135–224. doi: 10.1016/S0001-8686(00)00082-8
  • Da̧browski, A., Hubicki, Z., Podkościelny, P., Robens, E. (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56, 91–106. doi: 10.1016/j.chemosphere.2004.03.006
  • Das, B., Hazarika, P., Saikia, G., Kalita, H., Goswami, D.C., Das, H.B., Dube, S.N., Dutta, R.K. (2007) Removal of iron from groundwater by ash: A systematic study of a traditional method. Journal of Hazardous Materials, 141, 834–841. doi: 10.1016/j.jhazmat.2006.07.052
  • Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review, Journal of Physical and Chemical Reference Data, 30, 187–439. doi: 10.1063/1.1347984
  • Dimitrakos Michalakos, G., Martinez Nieva, J., Vayenas, D. V., Lyberatos, G. (1997) Removal of iron from potable water using a trickling filter, Water Research, 31, 991–996. doi: 10.1016/S0043-1354(96)00343-0
  • Durak, H., Genel, S., Tunç, M. (2019) Pyrolysis of black cumin seed: Significance of catalyst and temperature product yields and chromatographic characterization, Journal of Liquid Chromatography & Related Technologies, 42, 331–350. doi: 10.1080/10826076.2019.1593194
  • Ebrahimi, M., N. Samadani Langeroodi, Hooshmand, S. (2019) Biosorption of Fe(III) Ions Using Carrot: Equilibrium, Kinetics, and Statistical Analysis, Protection of Metals and Physical Chemistry of Surfaces, 55, 259–265. doi: 10.1134/S2070205119020163
  • Elsherif, K.M., El-Hashani, A., Haider, I. (2018) Biosorption of Fe (III) onto coffee and tea powder: Equilibrium and kinetic study, Asian Journal of Green Chemistry, 2, 380–394. doi:10.22631/ajgc.2018.127216.1062
  • Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M. (2010) Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature, Bioresource Technology, 101, 5043–5053. doi: 10.1016/j.biortech.2010.02.030
  • Feizi, M., Jalali, M. (2015) Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues, Journal of the Taiwan Institute of Chemical Engineers, 54, 125–136. doi: 10.1016/j.jtice.2015.03.027
  • Fiol, N., Villaescusa, I. (2009) Determination of sorbent point zero charge: Usefulness in sorption studies, Environmental Chemistry Letters, 7, 79–84. doi: 10.1007/s10311-008-0139-0
  • Franca, A.S., Oliveira, L.S., Nunes, A.A., Alves, C.C.O. (2010) Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents, Bioresource Technology, 101, 1068–1074. doi: 10.1016/j.biortech.2009.08.102
  • Furlan, F.L., Filho, N.C., Consolin, M.F.B., Gonçalves, M.S., Valderrama, P., Genena, A.K. (2018) Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution, Revista Ambiente & Agua, 13, 1–12. doi: 10.4136/ambi-agua.2181
  • Gandhi, M.R., Kousalya, G.N., Meenakshi, S. (2012) Selective Sorption of Fe(III) Using Modified Forms of Chitosan Beads, Journal of Applied Polymer Science, 124, 1858–1865. doi: 10.1002/app.35204
  • Harikishore Kumar Reddy, D., Lee, S.M. (2014) Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96–103. doi: 10.1016/j.colsurfa.2014.03.105
  • Ho, Y.S., McKay, G. (1999) Pseudo-second order model for sorption processes, Process Biochemistry, 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5
  • Kalak, T., Dudczak-Hałabuda, J., Tachibana, Y., Cierpiszewski, R. (2020) Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions, Chemosphere, 246, 1–8. doi: 10.1016/j.chemosphere.2019.125744
  • Kamarudzaman, A.N., Chia Chay, T., Ab Jalil, M.F., Abdul Talib, S. (2013) Biosorption of iron (III) from aqueous solution using pleurotus ostreatus spent mushroom compost as biosorbent, Advanced Materials Research, 636–642. doi: 10.4028/www.scientific.net/AMR.781-784.636
  • Khatri, N., Tyagi, S., Rawtani, D. (2017) Recent strategies for the removal of iron from water: A review, Journal of Water Process Engineering, 19, 291–304. doi: 10.1016/j.jwpe.2017.08.015
  • Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria, Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, Journal of Molecular Liquids, 273, 425–434. doi: 10.1016/j.molliq.2018.10.048
  • Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., Linares-Hernández, I. (2012) Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel, Journal of Environmental Management, 112, 120–127. doi: 10.1016/j.jenvman.2012.07.009
  • Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., Savage, G.P. (2019) A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil, Food Reviews International, 35, 342–362. doi: 10.1080/87559129.2018.1563793
  • Milani, P.A., Debs, K.B., Labuto, G., Carrilho, E.N.V.M. (2018) Agricultural solid waste for sorption of metal ions: part I—characterization and use of lettuce roots and sugarcane bagasse for Cu(II), Fe(II), Zn(II), and Mn(II) sorption from aqueous medium, Environmental Science and Pollution Research, 25, 35895–35905. doi: 10.1007/s11356-018-1615-0
  • Mohan, S., Gandhimathi, R. (2009) Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, Journal of Hazardous Materials, 169, 351–359. doi:10.1016/j.jhazmat.2009.03.104
  • Nandeshwar, S.N., Mahakalakar, A.S., Gupta, R.R., Kyzas, G.Z. (2016) Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River, India, Journal of Molecular Liquids, 216, 688–692. doi: 10.1016/j.molliq.2015.12.065
  • Negut, I., Grumezescu, V., Ficai, A., Grumezescu, A.M., Holban, A.M., Popescu, R.C., Savu, D., Vasile, B.S., Socol, G. (2018) MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings, Applied Surface Science, 455, 513–521. doi:10.1016/j.apsusc.2018.05.202
  • Qdais, H.A., Moussa, H. (2004) Removal of heavy metals from wastewater by membrane processes: A comparative study, Desalination, 164, 105–110. doi: 10.1016/S0011-9164(04)00169-9
  • Sadeek, S.A., Negm, N.A., Hefni, H.H.H., Abdel Wahab, M.M. (2015) Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures, International Journal of Biological Macromolecules, 81, 400–409. doi:10.1016/j.ijbiomac.2015.08.031
  • Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A. (2011) Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280, 1–13. doi:10.1016/j.desal.2011.07.019
  • Šćiban, M., Radetić, B., Kevrešan, Ž., Klašnja, M. (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, 402–409. doi:10.1016/j.biortech.2005.12.014
  • Shavandi, M.A., Haddadian, Z., Ismail, M.H.S., Abdullah, N., Abidin, Z.Z. (2012) Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite, Journal of the Taiwan Institute of Chemical Engineers, 43, 750–759. doi: 10.1016/j.jtice.2012.02.014
  • Sheibani, A., Shishehbor, M.R., Alaei, H. (2012) Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent, International Journal of Industrial Chemistry, 3, 1–4. doi:10.1186/2228-5547-3-4
  • Šoštarić, T.D., Petrović, M.S., Pastor, F.T., Lončarević, D.R., Petrović, J.T., Milojković, J. V., Stojanović, M.D. (2018) Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment, Journal of Molecular Liquids, 259, 340–349. doi: 10.1016/j.molliq.2018.03.055
  • Vassileva, P., Detcheva, A., Uzunov, I., Uzunova, S. (2013) Removal of Metal Ions from Aqueous Solutions Using Pyrolyzed Rice Husks: Adsorption Kinetics and Equilibria, Chemical Engineering Communications, 200, 1578–1599. doi: 10.1080/00986445.2012.755519
  • Verma, D., Gope, P.C., Maheshwari, M.K., Sharma, R.K. (2012) Bagasse fiber composites-A review, Journal of Materials and Environmental Science, 3, 1079–1092. https://www.jmaterenvironsci.com/
  • World Health Organization, (2003). Iron in drinking-water. WHO Guidelines for drinking-water quality. Backgr. Doc. Dev. WHO Guidel. Drink. Qual. Who/Sde/Wsh/03.04/08- 2, 4.
  • Zhu, X. hua, Li, J., Jin, Y., Guo, Y. Hai (2020) Preparation of porous hybrid adsorbents based on fluor(calcium silicate)/activated carbon and its application in the removal of iron (III) from ammonium phosphate solutions, Arabian Journal of Chemistry, 13, 1551–1562. doi:10.1016/j.arabjc.2017.12.006

ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ

Yıl 2020, , 961 - 980, 31.08.2020
https://doi.org/10.17482/uumfd.715236

Öz

Sulu çözeltilerden Fe(III) iyonunun giderimi için çörekotu posası adsorban olarak kullanılmıştır. Çözeltinin başlangıç pH’sı, sıcaklık, çalkalama süresi, adsorban miktarının adsorpsiyon verimi üzerindeki etkileri kesikli yöntemle deneysel olarak incelenmiştir. pH 4’te adsorbanın yüksek verimle Fe(III) iyonlarını giderdiği bulunmuştur. Adsorban miktarı ile giderme verimi arasındaki ilişki incelenmiş ve en yüksek giderme verimi 10 mg adsorban miktarı için elde edilmiştir. Adsorpsiyon izoterm modelleri (Langmuir, Freundlich ve DubininRadushkevic) uygulanmış ve adsorpsiyonun Langmuir izoterm modeline uyduğu bulunmuştur. Termodinamik çalışmalar sonucunda adsorpsiyonun ekzotermik, istemli ve kendiliğinden gerçekleştiği anlaşılmıştır.
Adsorpsiyonun ikinci dereceden yalancı kinetik modele uyduğu bulunmuştur. Adsorbanın rejenerasyon ve karakterizasyon çalışmaları yapılmıştır.

Kaynakça

  • Ahalya, N., Kanamadi, R.D., Ramachandra, T.V. (2006) Biosorption of iron(III) from aqueous solutions using the husk of Cicer arientinum, Indian Journal of Chemical Technology, 13, 122–127. http://op.niscair.res.in/index.php/IJCT
  • Ajmal, M., Rao, R.A.K., Khan, M.A. (2005) Adsorption of copper from aqueous solution on Brassica cumpestris (mustard oil cake), Journal of Hazardous Materials, B122, 177–183. doi:10.1016/j.jhazmat.2005.03.029
  • Aksu, Z., Tezer, S. (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris, Process Biochemistry, 40, 1347–1361. doi: 10.1016/j.procbio.2004.06.007
  • Al-Anber, Z.A., Al-Anber, M.A.S. (2008) Thermodynamics and kinetic studies of iron(III) adsorption by olive cake in a batch system, Journal of the Mexican Chemical Society, 52, 108–115. https://www.jmcs.org.mx/index.php/jmcs
  • Ben-Ali, S., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production, 142, 3809–3821. doi: 10.1016/j.jclepro.2016.10.08
  • Benaisa, S., Arhoun, B., El Mail, R., Rodriguez-Maroto, J.M. (2018) Potential of brown algae biomass as new biosorbent of Iron: Kinetic, equilibrium and thermodynamic study, Journal of Materials and Environmental Science, 9, 2131–2141. https://www.jmaterenvironsci.com/
  • Bhattacharyya, K.G., Gupta, S. Sen, 2006. Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12, 185–204. doi: 10.1007/s10450-006-0145-0
  • bin Jusoh, A., Cheng, W.H., Low, W.M., Nora’aini, A., Megat Mohd Noor, M.J. (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, 182, 347–353. doi: 10.1016/j.desal.2005.03.022
  • Cardoso, N.F., Lima, E.C., Royer, B., Bach, M. V., Dotto, G.L., Pinto, L.A.A., Calvete, T. (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents, Journal of Hazardous Materials, 241–242, 146–153. doi: 10.1016/j.jhazmat.2012.09.026
  • Černá, M. (1995) Use of solvent extraction for the removal of heavy metals from liquid wastes. Environmental Monitoring and Assessment, 34, 151–162. doi: 10.1007/bf00546029
  • Chen, Q., Luo, Z., Hills, C., Xue, G., Tyrer, M. (2009) Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43, 2605–2614. doi: 10.1016/j.watres.2009.03.007
  • Da̧browski, A. (2001) Adsorption - From theory to practice, Advances in Colloid and Interface Science, 93, 135–224. doi: 10.1016/S0001-8686(00)00082-8
  • Da̧browski, A., Hubicki, Z., Podkościelny, P., Robens, E. (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56, 91–106. doi: 10.1016/j.chemosphere.2004.03.006
  • Das, B., Hazarika, P., Saikia, G., Kalita, H., Goswami, D.C., Das, H.B., Dube, S.N., Dutta, R.K. (2007) Removal of iron from groundwater by ash: A systematic study of a traditional method. Journal of Hazardous Materials, 141, 834–841. doi: 10.1016/j.jhazmat.2006.07.052
  • Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review, Journal of Physical and Chemical Reference Data, 30, 187–439. doi: 10.1063/1.1347984
  • Dimitrakos Michalakos, G., Martinez Nieva, J., Vayenas, D. V., Lyberatos, G. (1997) Removal of iron from potable water using a trickling filter, Water Research, 31, 991–996. doi: 10.1016/S0043-1354(96)00343-0
  • Durak, H., Genel, S., Tunç, M. (2019) Pyrolysis of black cumin seed: Significance of catalyst and temperature product yields and chromatographic characterization, Journal of Liquid Chromatography & Related Technologies, 42, 331–350. doi: 10.1080/10826076.2019.1593194
  • Ebrahimi, M., N. Samadani Langeroodi, Hooshmand, S. (2019) Biosorption of Fe(III) Ions Using Carrot: Equilibrium, Kinetics, and Statistical Analysis, Protection of Metals and Physical Chemistry of Surfaces, 55, 259–265. doi: 10.1134/S2070205119020163
  • Elsherif, K.M., El-Hashani, A., Haider, I. (2018) Biosorption of Fe (III) onto coffee and tea powder: Equilibrium and kinetic study, Asian Journal of Green Chemistry, 2, 380–394. doi:10.22631/ajgc.2018.127216.1062
  • Farooq, U., Kozinski, J.A., Khan, M.A., Athar, M. (2010) Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature, Bioresource Technology, 101, 5043–5053. doi: 10.1016/j.biortech.2010.02.030
  • Feizi, M., Jalali, M. (2015) Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues, Journal of the Taiwan Institute of Chemical Engineers, 54, 125–136. doi: 10.1016/j.jtice.2015.03.027
  • Fiol, N., Villaescusa, I. (2009) Determination of sorbent point zero charge: Usefulness in sorption studies, Environmental Chemistry Letters, 7, 79–84. doi: 10.1007/s10311-008-0139-0
  • Franca, A.S., Oliveira, L.S., Nunes, A.A., Alves, C.C.O. (2010) Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents, Bioresource Technology, 101, 1068–1074. doi: 10.1016/j.biortech.2009.08.102
  • Furlan, F.L., Filho, N.C., Consolin, M.F.B., Gonçalves, M.S., Valderrama, P., Genena, A.K. (2018) Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution, Revista Ambiente & Agua, 13, 1–12. doi: 10.4136/ambi-agua.2181
  • Gandhi, M.R., Kousalya, G.N., Meenakshi, S. (2012) Selective Sorption of Fe(III) Using Modified Forms of Chitosan Beads, Journal of Applied Polymer Science, 124, 1858–1865. doi: 10.1002/app.35204
  • Harikishore Kumar Reddy, D., Lee, S.M. (2014) Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96–103. doi: 10.1016/j.colsurfa.2014.03.105
  • Ho, Y.S., McKay, G. (1999) Pseudo-second order model for sorption processes, Process Biochemistry, 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5
  • Kalak, T., Dudczak-Hałabuda, J., Tachibana, Y., Cierpiszewski, R. (2020) Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions, Chemosphere, 246, 1–8. doi: 10.1016/j.chemosphere.2019.125744
  • Kamarudzaman, A.N., Chia Chay, T., Ab Jalil, M.F., Abdul Talib, S. (2013) Biosorption of iron (III) from aqueous solution using pleurotus ostreatus spent mushroom compost as biosorbent, Advanced Materials Research, 636–642. doi: 10.4028/www.scientific.net/AMR.781-784.636
  • Khatri, N., Tyagi, S., Rawtani, D. (2017) Recent strategies for the removal of iron from water: A review, Journal of Water Process Engineering, 19, 291–304. doi: 10.1016/j.jwpe.2017.08.015
  • Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján, J.C., Anastopoulos, I. (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria, Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, Journal of Molecular Liquids, 273, 425–434. doi: 10.1016/j.molliq.2018.10.048
  • Lugo-Lugo, V., Barrera-Díaz, C., Ureña-Núñez, F., Bilyeu, B., Linares-Hernández, I. (2012) Biosorption of Cr(III) and Fe(III) in single and binary systems onto pretreated orange peel, Journal of Environmental Management, 112, 120–127. doi: 10.1016/j.jenvman.2012.07.009
  • Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., Savage, G.P. (2019) A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil, Food Reviews International, 35, 342–362. doi: 10.1080/87559129.2018.1563793
  • Milani, P.A., Debs, K.B., Labuto, G., Carrilho, E.N.V.M. (2018) Agricultural solid waste for sorption of metal ions: part I—characterization and use of lettuce roots and sugarcane bagasse for Cu(II), Fe(II), Zn(II), and Mn(II) sorption from aqueous medium, Environmental Science and Pollution Research, 25, 35895–35905. doi: 10.1007/s11356-018-1615-0
  • Mohan, S., Gandhimathi, R. (2009) Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, Journal of Hazardous Materials, 169, 351–359. doi:10.1016/j.jhazmat.2009.03.104
  • Nandeshwar, S.N., Mahakalakar, A.S., Gupta, R.R., Kyzas, G.Z. (2016) Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River, India, Journal of Molecular Liquids, 216, 688–692. doi: 10.1016/j.molliq.2015.12.065
  • Negut, I., Grumezescu, V., Ficai, A., Grumezescu, A.M., Holban, A.M., Popescu, R.C., Savu, D., Vasile, B.S., Socol, G. (2018) MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings, Applied Surface Science, 455, 513–521. doi:10.1016/j.apsusc.2018.05.202
  • Qdais, H.A., Moussa, H. (2004) Removal of heavy metals from wastewater by membrane processes: A comparative study, Desalination, 164, 105–110. doi: 10.1016/S0011-9164(04)00169-9
  • Sadeek, S.A., Negm, N.A., Hefni, H.H.H., Abdel Wahab, M.M. (2015) Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures, International Journal of Biological Macromolecules, 81, 400–409. doi:10.1016/j.ijbiomac.2015.08.031
  • Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A. (2011) Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review, Desalination, 280, 1–13. doi:10.1016/j.desal.2011.07.019
  • Šćiban, M., Radetić, B., Kevrešan, Ž., Klašnja, M. (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, 402–409. doi:10.1016/j.biortech.2005.12.014
  • Shavandi, M.A., Haddadian, Z., Ismail, M.H.S., Abdullah, N., Abidin, Z.Z. (2012) Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite, Journal of the Taiwan Institute of Chemical Engineers, 43, 750–759. doi: 10.1016/j.jtice.2012.02.014
  • Sheibani, A., Shishehbor, M.R., Alaei, H. (2012) Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent, International Journal of Industrial Chemistry, 3, 1–4. doi:10.1186/2228-5547-3-4
  • Šoštarić, T.D., Petrović, M.S., Pastor, F.T., Lončarević, D.R., Petrović, J.T., Milojković, J. V., Stojanović, M.D. (2018) Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment, Journal of Molecular Liquids, 259, 340–349. doi: 10.1016/j.molliq.2018.03.055
  • Vassileva, P., Detcheva, A., Uzunov, I., Uzunova, S. (2013) Removal of Metal Ions from Aqueous Solutions Using Pyrolyzed Rice Husks: Adsorption Kinetics and Equilibria, Chemical Engineering Communications, 200, 1578–1599. doi: 10.1080/00986445.2012.755519
  • Verma, D., Gope, P.C., Maheshwari, M.K., Sharma, R.K. (2012) Bagasse fiber composites-A review, Journal of Materials and Environmental Science, 3, 1079–1092. https://www.jmaterenvironsci.com/
  • World Health Organization, (2003). Iron in drinking-water. WHO Guidelines for drinking-water quality. Backgr. Doc. Dev. WHO Guidel. Drink. Qual. Who/Sde/Wsh/03.04/08- 2, 4.
  • Zhu, X. hua, Li, J., Jin, Y., Guo, Y. Hai (2020) Preparation of porous hybrid adsorbents based on fluor(calcium silicate)/activated carbon and its application in the removal of iron (III) from ammonium phosphate solutions, Arabian Journal of Chemistry, 13, 1551–1562. doi:10.1016/j.arabjc.2017.12.006
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Yasemin İşlek Coşkun 0000-0003-3207-4381

Yayımlanma Tarihi 31 Ağustos 2020
Gönderilme Tarihi 6 Nisan 2020
Kabul Tarihi 7 Temmuz 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İşlek Coşkun, Y. (2020). ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 961-980. https://doi.org/10.17482/uumfd.715236
AMA İşlek Coşkun Y. ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ. UUJFE. Ağustos 2020;25(2):961-980. doi:10.17482/uumfd.715236
Chicago İşlek Coşkun, Yasemin. “ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 2 (Ağustos 2020): 961-80. https://doi.org/10.17482/uumfd.715236.
EndNote İşlek Coşkun Y (01 Ağustos 2020) ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 2 961–980.
IEEE Y. İşlek Coşkun, “ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ”, UUJFE, c. 25, sy. 2, ss. 961–980, 2020, doi: 10.17482/uumfd.715236.
ISNAD İşlek Coşkun, Yasemin. “ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (Ağustos 2020), 961-980. https://doi.org/10.17482/uumfd.715236.
JAMA İşlek Coşkun Y. ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ. UUJFE. 2020;25:961–980.
MLA İşlek Coşkun, Yasemin. “ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 2, 2020, ss. 961-80, doi:10.17482/uumfd.715236.
Vancouver İşlek Coşkun Y. ÇÖREKOTU POSASI KULLANILARAK SULARDAN DEMİR(III) İYONUNUN GİDERİLMESİ. UUJFE. 2020;25(2):961-80.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr