Araştırma Makalesi
BibTex RIS Kaynak Göster

CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ

Yıl 2020, , 1205 - 1222, 31.12.2020
https://doi.org/10.17482/uumfd.769109

Öz

Türkiye, bulunduğu coğrafi ve jeolojik konumundan dolayı doğal afetlerden önemli ölçüde etkilenmektedir. Deprem, heyelan ve taşkından sonra en çok etkilenilen afet türü kaya düşmeleridir. Bu afet türünden korunmak için çeşitli önlem yöntemleri kullanılabilir. Bu yöntemlerin seçiminde ve projelendirilmesinde kaya düşmesi analizlerinin yapılması gerekmektedir. Rockyfor3D (RF3D) kaya düşmesi analizlerinde kullanılan başarılı bir yazılımdır. Ancak, veri hazırlama süreçleri çok karmaşıktır. CBS (Coğrafi Bilgi Sistemi) bilgisi gerektirir ve uzun zaman alır. Bu çalışmada, RF3D yazılımı için veri hazırlama süreçlerini otomatik olarak yapan bir araç oluşturulmuş ve kaya düşmesi analizleri yapılmıştır. Bu araç Python programlama dili ile oluşturulup ArcGIS yazılımına entegre edilmiştir. Bu çalışmanın uygulaması, Sivas il merkezinin batısında yer alan Kavak köyünde yapılmıştır. Düşmesi muhtemel kaya bloklarının kinetik enerji değerleri, zıplama yükseklikleri ve ulaşma mesafeleri gibi özellikleri başarıyla hesaplanmıştır. Bu sonuçlar kaya düşmesi önlem projelerinde, yer seçimi çalışmalarında, tehlike ve risk değerlendirme çalışmalarında kullanılabilir ve böylece karar vericiler tarafından daha doğru kararlar verilebilir.

Teşekkür

Bu çalışmaya sağladığı katkılarından dolayı Sivas İl Afet ve Acil Durum Müdürlüğü’ne teşekkürlerimi sunarım.

Kaynakça

  • 1. Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri. (1991) Türkiye jeoloji haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, Türkiye.
  • 2. Baltzer, A. (1875) Über einen neuen felssturz am roßberg, nebst einigen allgemeinen bemerkungen über derartige erscheinungen in den Alpen, Neues Jahrbuch f. Min. Geol. u. Pal. p. 15-26.
  • 3. Barnichon, J.D. (2005) http://www.rocpro3d.com/rocpro3d_en.php (Erişim Tarihi: 19.12.2018).
  • 4. Binal, A. ve Ercanoglu, M. (2010) Assessment of rockfall potential in the Kula (Manisa, Turkey) Geopark Region, Environmental Earth Sciences, v.61, pp.1361-1373. https://doi.org/10.1007/s12665-010-0454-1
  • 5. Bozzolo, D. ve Pamini, R. (1986) Simulation of rock falls down a valley side, Acta Mechanica 63, p. 113-130. https://doi.org/10.1007/BF01182543
  • 6. Chen, YC., Li, JK. ve Ran, LG. (2013) A review of rockfall control measures along highway, In Applied Mechanics and Materials (Vol. 353, pp. 2385-2391). https://doi.org/10.4028/www.scientific.net/amm.353-356.2385
  • 7. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Regions Science and Technology, 63(1-2), 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • 8. Crosta, GB. ve Agliardi, F. (2003) A methodology for physically based rockfall hazard assessment, Natural Hazards and Earth System Sciences 3(5):407–422. https://doi.org/10.5194/nhess-3-407-2003
  • 9. Cruden D.M. ve Varnes, D.J. (1996) Landslide types and processes. Landslides investigation and mitigation, Special Report 247, In: Turner, A.K. and Schuster, R.L. (eds.), 36–75 pp.
  • 10. Dorren, LKA., Maier, B., Putters, US. and Seijmonsbergen, AC. (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps, Geomorphology 57:151–167. https://doi.org/10.1016/S0169-555X(03)00100-4
  • 11. Dorren, L. K. A., Berger, F., and Putters, U. S. (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145–153. https://doi.org/10.5194/nhess-6-145-2006
  • 12. Dorren, L.K.A. (2016) Rockyfor3D (v5.2) revealed – transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 33 p.
  • 13. Erismann, T.H. ve Abele, G. (2001) Dynamics of rockslides and rockfalls, Springer-Verlag, Berlin Heidelberg, 316p.
  • 14. Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., & Calamita, F. (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations, Remote Sensing, 12(12), 2053. https://doi.org/10.3390/rs12122053
  • 15. Frattini, P., Crosta, G., Carrara, A. and Agliardi, F. (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches Geomorphology 94(3–4):419–437. https://doi.org/10.1016/j.geomorph.2006.10.037
  • 16. Gökçe, O., Özden, Ş., Demir, A. (2008) Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri, Afet İşleri Genel Müdürlüğü, Afet Etüt ve Hasar Tespit Daire Başkanlığı, Ankara, 126s.
  • 17. Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. (2002) Stone: a computer program for the three-dimensional simulation of rockfalls, Computers and Geosciences, 28:1079–1093. https://doi.org/10.1016/S0098-3004(02)00025-0
  • 18. Hutchinson, J.N. (1988) Morphological and geotechnical parameters of landslide in relation to geology and hydrogeology, in: 5th international symposium on landslides, Lausanne, edited by: Bonnard, C., A.A. Balkema, 3–35. https://doi.org/10.1016/0148-9062(89)90310-0
  • 19. Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000) Colorado Rockfall Simulation Program Version 4.0 User's Manual: Colorado Department of Transportation. Denver, Colorado, United States of America, 3-47.
  • 20. Kaya, Y. and Topal, T. (2015) Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey), Environmental Earth Sciences, 74, 4187–4199. https://doi.org/10.1007/s12665-015-4473-9
  • 21. Keskin, I. (2013) Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey), Environmental Earth Sciences, v.70, pp.1619-1628. https://doi.org/10.1007/s12665-013-2247-9.
  • 22. Landolt, E. (1886) Die bäche, schneelawinen und steinschläge und die mittel zur verminderung der schädigungen durch dieselben. Zürich, Orell Füssli & Co. https://doi.org/10.3931/e-rara-21003
  • 23. Lehmann, O. (1933) Morphologische theorie der verwitterung von steinschlagwänden. Vierteljahrschrift Nat, forsch Ges, Zürich 87, p. 83–126.
  • 24. Moos, C., Toe, D., Bourrier, F., Knüsel, S., Stoffel, M., & Dorren, L. (2019). Assessing the effect of invasive tree species on rockfall risk–The case of Ailanthus altissima, Ecological Engineering, 131, 63-72. https://doi.org/10.1016/j.ecoleng.2019.03.001
  • 25. Nasery, M., Çelı̇k, M. (2020) Kaya Islahı Çalışmalarında Birleşik Çözümlerin İncelenmesi: Trabzon Kaymaklı Örneği, Uludağ University Journal of The Faculty of Engineering , 25 (1) , 539-554 . https://doi.org/10.17482/uumfd.680226
  • 26. Netti, T., Castelli, M., De Biagi, V. (2016) Effect of the Number of Simulations on the Accuracy of a Rockfall Analysis, Procedia Engineering.158, 464–469. https://doi.org/10.1016/j.proeng.2016.08.473
  • 27. Palma, B., Parise, M., Reichenbach, P., Guzzetti, F. (2012) Rockfall hazard assessment along a road in the Sorrento Peninsula Campania southern Italy, Natural Hazards, v.61, pp.187-201. https://doi.org/10.1007/s11069-011-9899-0
  • 28. Polat, A., Keskin, I., Denizli, I. (2016) Preventing and analysis of falling rocks: a case of sarica village (Gürün, Turkey), Journal of the Geological Society of India, 88, 763–772. https://doi.org/10.1007/s12594-016-0544-0
  • 29. Polat A. ve Keskin, I. (2017) Kaya düşmesi çalışmalarında insansiz hava aracı kullanımı ve cbs tabanlı 3D analiz. 70, Türkiye Jeoloji Kurultayı, 2017, Ankara.
  • 30. Ritchie, A.M. (1963) Evaluation of rockfall and its control. Highw. Res. Board - NRC, Washington DC, Highway Research Record 17, p. 13–28.
  • 31. Rocscience, (1996) https://www.rocscience.com/software/rocfall. (Erişim Tarihi: 19.12.2018).
  • 32. Saroglou, C., Asteriou, P., Zekkos, D., Tsiambaos, G., Clark, M. and Manousakis, J. (2018) UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Natural Hazards and Earth System Sciences, 18, 321–333. https://doi.org/10.5194/nhess-18-321, 2018.
  • 33. Scioldo, G. (1991) Isomap and rotomap- 3D surface modelling and rockfall analysis. Geo and Soft, Torino.
  • 34. Şener, E. (2019) İnsansız hava araçları kullanılarak olası kaya düşmelerinin coğrafi bilgi sistemleri tabanlı 3D modellenmesi: kasımlar köyü (Isparta-Türkiye) Örneği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (2) , 419-426. https://doi.org/ 10.19113/sdufenbed.501482.
  • 35. Topal, T., Akın M. and Ozden, A.U. (2007) Assessment of rockfall hazard around Afyon Castle, Environmental Geology, v.53, pp.191-200. https://doi.org/10.1007/s00254-006-0633-2
  • 36. Tunusluoğlu, Mc. and Zorlu, K. (2009) Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey), Environmental Geology 56(5):963–972. https://doi.org/10.1007/s00254-008-1198-z
  • 37. Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z.A. and Kasmer, O. (2006) Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgup (Cappadocia), Turkey, Environmental Geology, v.50, pp.473-494. https://doi.org/10.1007/s00254-006-0222-4
  • 38. Varnes, D.J. (1978) Slope movements: types and processes, In: Schuster, R.L., Krizek, R.J.(Eds.), Landslide Analysis and Control, Transportation Research Board, Special Report No. 176, Washington, DC, pp. 11–33.
  • 39. Volkwein, A., Schellenberg, K., Labiouse, V., Gliardi, F., Berger, F., Bourrier, F., Dorren, LKA., Gerber, W. and Jaboyedoff, M. (2011) Rockfall characterisation and structural protection—a review. Natural Hazards and Earth System Sciences, 11:2617–2651. https://doi.org/10.5194/nhess-11-2617-2011
  • 40. Youssef, A. M., & Maerz, N. H. (2009). Slope stability hazard assessment and mitigation methodology along eastern desert Aswan-Cairo highway, Egypt. Earth Sciences, 20(2). https://doi.org/ 10.4197/EAR.20-2.8
  • 41. Youssef, A.M., Pradhan, B., Kathery, M.A., Bathrellos, G.D. and Skilodimou, H.D. (2014) Assessment of rockfall hazardat Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, pp.101, pp.309-321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 42. Youssef, A. M., Pradhan, B., Al-Kathery, M. M., Bathrellos, G. D., Skilodimou, H. D., (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, 101: 309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 43. Žabota, B., Mikoš, M., and Kobal, M. (2019) Rockfall modelling in forested areas: the role of digital terrain model spatial resolution, Natural Hazards and Earth System Sciences, Discuss. https://doi.org/10.5194/nhess-2019-372, in review, 2019.

GIS Based 3D Rockfall Analysis and Data Preparation Processes: Case of Kavak Village (Sivas-Turkey)

Yıl 2020, , 1205 - 1222, 31.12.2020
https://doi.org/10.17482/uumfd.769109

Öz

Turkey is significantly affected by natural disasters due to its geographical and geological location. After the earthquake, landslide and flooding, the most adverse type of disaster is rockfall. A number of methods can be used to prevent this type of disaster. Rockfall analyzes should be carried out to select and project such mitigation methods. Rockyfor3D (RF3D) is a successful software used in rockfall analysis. However, data preparation processes are complicated. It requires GIS (Geographic Information System) knowledge and preparation processes take a long time. In this study, a tool was created to prepare data for Rockyfor3D (RF3D) software and rockfall analyses were executed. This tool was designed with Python scripting and integrated into ArcGIS. The proposed methodology was applied for the Kavak region in the west of Sivas city. Kinetic energy and bounce height values as well as runout distances of blocks that have tendency to fall were successfully calculated. The data preparation process required by the software was performed automatically and quickly using the tool prepared in this study. These results can be used in rockfall mitigation projects, site selection studies, hazard and risk assessment studies, and so, more accurate decisions can be made by decision-makers.

Kaynakça

  • 1. Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri. (1991) Türkiye jeoloji haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, Türkiye.
  • 2. Baltzer, A. (1875) Über einen neuen felssturz am roßberg, nebst einigen allgemeinen bemerkungen über derartige erscheinungen in den Alpen, Neues Jahrbuch f. Min. Geol. u. Pal. p. 15-26.
  • 3. Barnichon, J.D. (2005) http://www.rocpro3d.com/rocpro3d_en.php (Erişim Tarihi: 19.12.2018).
  • 4. Binal, A. ve Ercanoglu, M. (2010) Assessment of rockfall potential in the Kula (Manisa, Turkey) Geopark Region, Environmental Earth Sciences, v.61, pp.1361-1373. https://doi.org/10.1007/s12665-010-0454-1
  • 5. Bozzolo, D. ve Pamini, R. (1986) Simulation of rock falls down a valley side, Acta Mechanica 63, p. 113-130. https://doi.org/10.1007/BF01182543
  • 6. Chen, YC., Li, JK. ve Ran, LG. (2013) A review of rockfall control measures along highway, In Applied Mechanics and Materials (Vol. 353, pp. 2385-2391). https://doi.org/10.4028/www.scientific.net/amm.353-356.2385
  • 7. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Regions Science and Technology, 63(1-2), 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • 8. Crosta, GB. ve Agliardi, F. (2003) A methodology for physically based rockfall hazard assessment, Natural Hazards and Earth System Sciences 3(5):407–422. https://doi.org/10.5194/nhess-3-407-2003
  • 9. Cruden D.M. ve Varnes, D.J. (1996) Landslide types and processes. Landslides investigation and mitigation, Special Report 247, In: Turner, A.K. and Schuster, R.L. (eds.), 36–75 pp.
  • 10. Dorren, LKA., Maier, B., Putters, US. and Seijmonsbergen, AC. (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps, Geomorphology 57:151–167. https://doi.org/10.1016/S0169-555X(03)00100-4
  • 11. Dorren, L. K. A., Berger, F., and Putters, U. S. (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145–153. https://doi.org/10.5194/nhess-6-145-2006
  • 12. Dorren, L.K.A. (2016) Rockyfor3D (v5.2) revealed – transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 33 p.
  • 13. Erismann, T.H. ve Abele, G. (2001) Dynamics of rockslides and rockfalls, Springer-Verlag, Berlin Heidelberg, 316p.
  • 14. Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., & Calamita, F. (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations, Remote Sensing, 12(12), 2053. https://doi.org/10.3390/rs12122053
  • 15. Frattini, P., Crosta, G., Carrara, A. and Agliardi, F. (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches Geomorphology 94(3–4):419–437. https://doi.org/10.1016/j.geomorph.2006.10.037
  • 16. Gökçe, O., Özden, Ş., Demir, A. (2008) Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri, Afet İşleri Genel Müdürlüğü, Afet Etüt ve Hasar Tespit Daire Başkanlığı, Ankara, 126s.
  • 17. Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. (2002) Stone: a computer program for the three-dimensional simulation of rockfalls, Computers and Geosciences, 28:1079–1093. https://doi.org/10.1016/S0098-3004(02)00025-0
  • 18. Hutchinson, J.N. (1988) Morphological and geotechnical parameters of landslide in relation to geology and hydrogeology, in: 5th international symposium on landslides, Lausanne, edited by: Bonnard, C., A.A. Balkema, 3–35. https://doi.org/10.1016/0148-9062(89)90310-0
  • 19. Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000) Colorado Rockfall Simulation Program Version 4.0 User's Manual: Colorado Department of Transportation. Denver, Colorado, United States of America, 3-47.
  • 20. Kaya, Y. and Topal, T. (2015) Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey), Environmental Earth Sciences, 74, 4187–4199. https://doi.org/10.1007/s12665-015-4473-9
  • 21. Keskin, I. (2013) Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey), Environmental Earth Sciences, v.70, pp.1619-1628. https://doi.org/10.1007/s12665-013-2247-9.
  • 22. Landolt, E. (1886) Die bäche, schneelawinen und steinschläge und die mittel zur verminderung der schädigungen durch dieselben. Zürich, Orell Füssli & Co. https://doi.org/10.3931/e-rara-21003
  • 23. Lehmann, O. (1933) Morphologische theorie der verwitterung von steinschlagwänden. Vierteljahrschrift Nat, forsch Ges, Zürich 87, p. 83–126.
  • 24. Moos, C., Toe, D., Bourrier, F., Knüsel, S., Stoffel, M., & Dorren, L. (2019). Assessing the effect of invasive tree species on rockfall risk–The case of Ailanthus altissima, Ecological Engineering, 131, 63-72. https://doi.org/10.1016/j.ecoleng.2019.03.001
  • 25. Nasery, M., Çelı̇k, M. (2020) Kaya Islahı Çalışmalarında Birleşik Çözümlerin İncelenmesi: Trabzon Kaymaklı Örneği, Uludağ University Journal of The Faculty of Engineering , 25 (1) , 539-554 . https://doi.org/10.17482/uumfd.680226
  • 26. Netti, T., Castelli, M., De Biagi, V. (2016) Effect of the Number of Simulations on the Accuracy of a Rockfall Analysis, Procedia Engineering.158, 464–469. https://doi.org/10.1016/j.proeng.2016.08.473
  • 27. Palma, B., Parise, M., Reichenbach, P., Guzzetti, F. (2012) Rockfall hazard assessment along a road in the Sorrento Peninsula Campania southern Italy, Natural Hazards, v.61, pp.187-201. https://doi.org/10.1007/s11069-011-9899-0
  • 28. Polat, A., Keskin, I., Denizli, I. (2016) Preventing and analysis of falling rocks: a case of sarica village (Gürün, Turkey), Journal of the Geological Society of India, 88, 763–772. https://doi.org/10.1007/s12594-016-0544-0
  • 29. Polat A. ve Keskin, I. (2017) Kaya düşmesi çalışmalarında insansiz hava aracı kullanımı ve cbs tabanlı 3D analiz. 70, Türkiye Jeoloji Kurultayı, 2017, Ankara.
  • 30. Ritchie, A.M. (1963) Evaluation of rockfall and its control. Highw. Res. Board - NRC, Washington DC, Highway Research Record 17, p. 13–28.
  • 31. Rocscience, (1996) https://www.rocscience.com/software/rocfall. (Erişim Tarihi: 19.12.2018).
  • 32. Saroglou, C., Asteriou, P., Zekkos, D., Tsiambaos, G., Clark, M. and Manousakis, J. (2018) UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Natural Hazards and Earth System Sciences, 18, 321–333. https://doi.org/10.5194/nhess-18-321, 2018.
  • 33. Scioldo, G. (1991) Isomap and rotomap- 3D surface modelling and rockfall analysis. Geo and Soft, Torino.
  • 34. Şener, E. (2019) İnsansız hava araçları kullanılarak olası kaya düşmelerinin coğrafi bilgi sistemleri tabanlı 3D modellenmesi: kasımlar köyü (Isparta-Türkiye) Örneği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (2) , 419-426. https://doi.org/ 10.19113/sdufenbed.501482.
  • 35. Topal, T., Akın M. and Ozden, A.U. (2007) Assessment of rockfall hazard around Afyon Castle, Environmental Geology, v.53, pp.191-200. https://doi.org/10.1007/s00254-006-0633-2
  • 36. Tunusluoğlu, Mc. and Zorlu, K. (2009) Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey), Environmental Geology 56(5):963–972. https://doi.org/10.1007/s00254-008-1198-z
  • 37. Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z.A. and Kasmer, O. (2006) Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgup (Cappadocia), Turkey, Environmental Geology, v.50, pp.473-494. https://doi.org/10.1007/s00254-006-0222-4
  • 38. Varnes, D.J. (1978) Slope movements: types and processes, In: Schuster, R.L., Krizek, R.J.(Eds.), Landslide Analysis and Control, Transportation Research Board, Special Report No. 176, Washington, DC, pp. 11–33.
  • 39. Volkwein, A., Schellenberg, K., Labiouse, V., Gliardi, F., Berger, F., Bourrier, F., Dorren, LKA., Gerber, W. and Jaboyedoff, M. (2011) Rockfall characterisation and structural protection—a review. Natural Hazards and Earth System Sciences, 11:2617–2651. https://doi.org/10.5194/nhess-11-2617-2011
  • 40. Youssef, A. M., & Maerz, N. H. (2009). Slope stability hazard assessment and mitigation methodology along eastern desert Aswan-Cairo highway, Egypt. Earth Sciences, 20(2). https://doi.org/ 10.4197/EAR.20-2.8
  • 41. Youssef, A.M., Pradhan, B., Kathery, M.A., Bathrellos, G.D. and Skilodimou, H.D. (2014) Assessment of rockfall hazardat Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, pp.101, pp.309-321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 42. Youssef, A. M., Pradhan, B., Al-Kathery, M. M., Bathrellos, G. D., Skilodimou, H. D., (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, 101: 309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 43. Žabota, B., Mikoš, M., and Kobal, M. (2019) Rockfall modelling in forested areas: the role of digital terrain model spatial resolution, Natural Hazards and Earth System Sciences, Discuss. https://doi.org/10.5194/nhess-2019-372, in review, 2019.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makaleleri
Yazarlar

Ali Polat 0000-0002-9147-3633

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 14 Temmuz 2020
Kabul Tarihi 16 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Polat, A. (2020). CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1205-1222. https://doi.org/10.17482/uumfd.769109
AMA Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. Aralık 2020;25(3):1205-1222. doi:10.17482/uumfd.769109
Chicago Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 3 (Aralık 2020): 1205-22. https://doi.org/10.17482/uumfd.769109.
EndNote Polat A (01 Aralık 2020) CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1205–1222.
IEEE A. Polat, “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”, UUJFE, c. 25, sy. 3, ss. 1205–1222, 2020, doi: 10.17482/uumfd.769109.
ISNAD Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (Aralık 2020), 1205-1222. https://doi.org/10.17482/uumfd.769109.
JAMA Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. 2020;25:1205–1222.
MLA Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 3, 2020, ss. 1205-22, doi:10.17482/uumfd.769109.
Vancouver Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. 2020;25(3):1205-22.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr