Investigation of the Effects of Linear Alkyl Benzene Sulphonic Acid Modification on the Temperature Susceptibility and Viscoelastic Behaviour of Bitumen
It is known that, alkyl benzene derived amphiphiles are used in the asphalt industry due to their retarding properties of asphaltene precipitation, but studies on this subject are limited. Within the scope of this study, the utilization of linear alkyl benzene sulfonic acid (LABSA) surfactant with bitumen was evaluated by penetration and softening point tests together with dynamic shear rheometer investigations. Considering the penetration index and complex shear modulus values of the samples produced with different LABSA contents, temperature sensitivity and viscoelastic behaviours were investigated. In addition, the performance of the samples after short-term and long-term aging was also examined, so that the effects of LABSA content against aging were studied. According to the results, it is seen that the use of LABSA significantly reduces the temperature susceptibility and improves the bitumen's elastic behaviour. Additionally, LABSA modification increased the aging resistance of the bitumen. Utilization of LABSA at the rate of 2% of bitumen weight provided the best results in terms of temperature sensitivity and elastic performance among the samples.
Ahmadi, M. ve Chen, Z. (2021) Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions. Fuel, 288, 119729. https://doi.org/10.1016/j.fuel.2020.119729
Alhreez, M. ve Wen, D. (2018) Controlled releases of asphaltene inhibitors by nanoemulsions, Fuel, 234, 538-548. https://doi.org/10.1016/j.fuel.2018.06.079
Barth, E.J. (1962) Bitumen Science and Technology, Gordon and Breach, New York.
Bonemazzi, F. ve Giavarini, C. (1999). Shifting the bitumen structure from sol to gel, Journal of Petroleum Science and Engineering, 22(1-3), 17-24. https://doi.org/10.1016/S0920-4105(98)00052-7
Chang, C. L. ve Fogler, H. S. (1994) Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques, Langmuir, 10(6), 1758-1766.
Dolganova, I. O. Dolganov, I. M. Bunaev, A. A. ve Pasyukova, M. A. (2019) Nature of highly viscous component in the alkylbenzene sulfonic acid technology and its influence on the process efficiency, Petroleum & Coal, 61(1), 25-31.
García, A. Aguiar-Moya, J. P. Salazar-Delgado, J. Baldi-Sevilla, A. ve Loría-Salazar, L. G. (2019) Methodology for estimating the modulus of elasticity of bitumen under different aging conditions by AFM, Road Materials and Pavement Design, 20(1), 332-346. https://doi.org/10.1080/14680629.2019.1588152
Goual, L. ve Firoozabadi, A. (2004) Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE journal, 50(2), 470-479. https://doi.org/10.1002/aic.10041
Goual, L. ve Sedghi, M. (2015) Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. Journal of colloid and interface science, 440, 23-31. https://doi.org/10.1016/j.jcis.2014.10.043
Hashmi, S. M. Zhong, K. X. ve Firoozabadi, A. (2012) Acid–base chemistry enables reversible colloid-to-solution transition of asphaltenes in non-polar systems, Soft Matter, 8(33), 8778-8785. doi: 10.1039/C2SM26003D
Hosseini-Moghadam, S. M. A. Zahedi-Nejad, A. Bahrami, M., Torkaman, M. ve Ghayyem, M. A. (2021) Experimental and Modeling Investigations of Temperature Effect on Chemical Inhibitors of Asphaltene Aggregation. Journal of Petroleum Science and Engineering, 108858. https://doi.org/10.1016/j.petrol.2021.108858
Hu, Y. F. ve Guo, T. M. (2005) Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils, Langmuir, 21(18), 8168-8174. https://doi.org/10.1021/la050212f
Jada, A. ve Salou, M. (2002) Effects of the asphaltene and resin contents of the bitumens on the water–bitumen interface properties, Journal of Petroleum Science and Engineering, 33(1-3), 185-193. https://doi.org/10.1016/S0920-4105(01)00185-1
Jiang, B. Zhang, R. Yang, N. Zhang, L. Sun, Y. Jian, C. ... ve Xu, Z. (2019) Molecular mechanisms of suppressing asphaltene aggregation and flocculation by dodecylbenzenesulfonic acid probed by molecular dynamics simulations. Energy & Fuels, 33(6), 5067-5080. https://doi.org/10.1021/acs.energyfuels.9b00821
Jiang, W. Bao, R. Lu, H. Yuan, D. Lu, R. Sha, A. ve Shan, J. (2021) Analysis of rheological properties and aging mechanism of bitumen after short-term and long-term aging, Construction and Building Materials, 273, 121777. https://doi.org/10.1016/j.conbuildmat.2020.121777
Karaaslan, U. Uluneye, E. ve Parlaktuna, M. (2002) Effect of an anionic surfactant on different type of hydrate structures, Journal of Petroleum Science and Engineering, 35(1-2), 49-57. https://doi.org/10.1016/S0920-4105(02)00163-8
Keyf, S. (2010) Investigation of penetration and penetration index in bitumen modified with sbs and reactive terpolymer, Sigma, 28, 26-34.
Lin, J. Hong, J. Liu, J. ve Wu, S. (2016) Investigation on physical and chemical parameters to predict long-term aging of asphalt binder, Construction and Building Materials, 122, 753-759. https://doi.org/10.1016/j.conbuildmat.2016.06.121
Mühlberger, M. Janko, C. Unterweger, H. Schreiber, E. Band, J. Lehmann, C., ... ve Tietze, R. (2019) Functionalization of T lymphocytes for magnetically controlled immune therapy: Selection of suitable superparamagnetic iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 473, 61-67. https://doi.org/10.1016/j.jmmm.2018.10.022
Mullins, O. C. (2011) The asphaltenes, Annual Review of Analytical Chemistry, 4, 393-418.
Ortega, F. J. Navarro, F. J. ve García-Morales, M. (2017) Dodecylbenzenesulfonic acid as a Bitumen modifier: a novel approach to enhance rheological properties of bitumen, Energy & Fuels, 31(5), 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419
Pfeiffer P.M Van Doormal (1936) The rheological properties of asphaltic bitumens, Journal of the Institute of Petroleum, 22, 414-440.
Razipour, M. Samipour Giri, M. ve Majidian, N. (2021) Application of surfactants on asphaltene stability in heavy oil by interfacial tension approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13. https://doi.org/10.1080/15567036.2020.1752332
Read, J. ve Whiteoak, D. (2003) The shell bitumen handbook. Thomas Telford, New York.
Rogel, E. (2011) Effect of inhibitors on asphaltene aggregation: A theoretical framework, Energy & fuels, 25(2), 472-481. https://doi.org/10.1021/ef100912b
Rogel, E.ve León, O. (2001) Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations, Energy & fuels, 15(5), 1077-1086. https://doi.org/10.1021/ef000152f
Sengoz, B. ve Isikyakar, G. (2008) Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen, Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013
Strausz, O. P., Mojelsky, T. W. ve Lown, E. M. (1992) The molecular structure of asphaltene: an unfolding story, Fuel, 71(12), 1355-1363. https://doi.org/10.1016/0016-2361(92)90206-4
Subramanian, D. ve Firoozabadi, A. (2015) Effect of surfactants and water on inhibition of asphaltene precipitation and deposition, International Petroleum Exhibition and Conference. Society of Petroleum Engineers, Abu Dhabi. https://doi.org/10.2118/177669-MS
Wei, D. Orlandi, E. Simon, S. Sjöblom, J. ve Suurkuusk, M. (2015) Interactions between asphaltenes and alkylbenzene-derived inhibitors investigated by isothermal titration calorimetry, Journal of Thermal Analysis and Calorimetry, 120(3), 1835-1846. doi: 10.1007/s10973-015-4542-z
Alkil benzen’den türetilmiş amfifillerin, asfalten çökelmesini geciktirici özellikleri sebebiyle, asfalt endüstrisinde kullanıldığı bilinmektedir, ancak bu konuda yapılmış çalışmalar kısıtlıdır. Çalışma kapsamında, deterjan endüstrisinde kullanılan lineer alkil benzen sülfonik asit (LABSA) sürfaktanının bitüm ile kullanımı, penetrasyon ve yumuşama noktası deneyi ile dinamik kayma reometresi kullanılarak incelenmiştir. Farklı LABSA içerikleri ile üretilmiş numunelerin penetrasyon indeksi ve kompleks kayma modül değerleri göz önünde bulundurularak sıcaklık hassasiyeti ve viskoelastik davranışları araştırılmıştır. Ayrıca, numunelerin kısa dönem ve uzun dönem yaşlanma sonrasındaki performansları da incelenerek LABSA içeriğinin yaşlanmaya karşı etkileri irdelenmiştir. Elde edilen sonuçlara göre, LABSA kullanımının sıcaklık hassasiyetini belirgin özellikte azalttığı ve bitüme elastik davranış kazandırdığı görülmektedir. Bitüm ağırlığının %2’si oranında LABSA kullanımı, sıcaklık hassasiyeti ve elastik performans açısından en uygun sonuçları vermektedir. Bununla birlikte, LABSA modifikasyonunun bitümün yaşlanmaya karşı direncini arttırmaktadır.
Ahmadi, M. ve Chen, Z. (2021) Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions. Fuel, 288, 119729. https://doi.org/10.1016/j.fuel.2020.119729
Alhreez, M. ve Wen, D. (2018) Controlled releases of asphaltene inhibitors by nanoemulsions, Fuel, 234, 538-548. https://doi.org/10.1016/j.fuel.2018.06.079
Barth, E.J. (1962) Bitumen Science and Technology, Gordon and Breach, New York.
Bonemazzi, F. ve Giavarini, C. (1999). Shifting the bitumen structure from sol to gel, Journal of Petroleum Science and Engineering, 22(1-3), 17-24. https://doi.org/10.1016/S0920-4105(98)00052-7
Chang, C. L. ve Fogler, H. S. (1994) Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques, Langmuir, 10(6), 1758-1766.
Dolganova, I. O. Dolganov, I. M. Bunaev, A. A. ve Pasyukova, M. A. (2019) Nature of highly viscous component in the alkylbenzene sulfonic acid technology and its influence on the process efficiency, Petroleum & Coal, 61(1), 25-31.
García, A. Aguiar-Moya, J. P. Salazar-Delgado, J. Baldi-Sevilla, A. ve Loría-Salazar, L. G. (2019) Methodology for estimating the modulus of elasticity of bitumen under different aging conditions by AFM, Road Materials and Pavement Design, 20(1), 332-346. https://doi.org/10.1080/14680629.2019.1588152
Goual, L. ve Firoozabadi, A. (2004) Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE journal, 50(2), 470-479. https://doi.org/10.1002/aic.10041
Goual, L. ve Sedghi, M. (2015) Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. Journal of colloid and interface science, 440, 23-31. https://doi.org/10.1016/j.jcis.2014.10.043
Hashmi, S. M. Zhong, K. X. ve Firoozabadi, A. (2012) Acid–base chemistry enables reversible colloid-to-solution transition of asphaltenes in non-polar systems, Soft Matter, 8(33), 8778-8785. doi: 10.1039/C2SM26003D
Hosseini-Moghadam, S. M. A. Zahedi-Nejad, A. Bahrami, M., Torkaman, M. ve Ghayyem, M. A. (2021) Experimental and Modeling Investigations of Temperature Effect on Chemical Inhibitors of Asphaltene Aggregation. Journal of Petroleum Science and Engineering, 108858. https://doi.org/10.1016/j.petrol.2021.108858
Hu, Y. F. ve Guo, T. M. (2005) Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils, Langmuir, 21(18), 8168-8174. https://doi.org/10.1021/la050212f
Jada, A. ve Salou, M. (2002) Effects of the asphaltene and resin contents of the bitumens on the water–bitumen interface properties, Journal of Petroleum Science and Engineering, 33(1-3), 185-193. https://doi.org/10.1016/S0920-4105(01)00185-1
Jiang, B. Zhang, R. Yang, N. Zhang, L. Sun, Y. Jian, C. ... ve Xu, Z. (2019) Molecular mechanisms of suppressing asphaltene aggregation and flocculation by dodecylbenzenesulfonic acid probed by molecular dynamics simulations. Energy & Fuels, 33(6), 5067-5080. https://doi.org/10.1021/acs.energyfuels.9b00821
Jiang, W. Bao, R. Lu, H. Yuan, D. Lu, R. Sha, A. ve Shan, J. (2021) Analysis of rheological properties and aging mechanism of bitumen after short-term and long-term aging, Construction and Building Materials, 273, 121777. https://doi.org/10.1016/j.conbuildmat.2020.121777
Karaaslan, U. Uluneye, E. ve Parlaktuna, M. (2002) Effect of an anionic surfactant on different type of hydrate structures, Journal of Petroleum Science and Engineering, 35(1-2), 49-57. https://doi.org/10.1016/S0920-4105(02)00163-8
Keyf, S. (2010) Investigation of penetration and penetration index in bitumen modified with sbs and reactive terpolymer, Sigma, 28, 26-34.
Lin, J. Hong, J. Liu, J. ve Wu, S. (2016) Investigation on physical and chemical parameters to predict long-term aging of asphalt binder, Construction and Building Materials, 122, 753-759. https://doi.org/10.1016/j.conbuildmat.2016.06.121
Mühlberger, M. Janko, C. Unterweger, H. Schreiber, E. Band, J. Lehmann, C., ... ve Tietze, R. (2019) Functionalization of T lymphocytes for magnetically controlled immune therapy: Selection of suitable superparamagnetic iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 473, 61-67. https://doi.org/10.1016/j.jmmm.2018.10.022
Mullins, O. C. (2011) The asphaltenes, Annual Review of Analytical Chemistry, 4, 393-418.
Ortega, F. J. Navarro, F. J. ve García-Morales, M. (2017) Dodecylbenzenesulfonic acid as a Bitumen modifier: a novel approach to enhance rheological properties of bitumen, Energy & Fuels, 31(5), 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419
Pfeiffer P.M Van Doormal (1936) The rheological properties of asphaltic bitumens, Journal of the Institute of Petroleum, 22, 414-440.
Razipour, M. Samipour Giri, M. ve Majidian, N. (2021) Application of surfactants on asphaltene stability in heavy oil by interfacial tension approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13. https://doi.org/10.1080/15567036.2020.1752332
Read, J. ve Whiteoak, D. (2003) The shell bitumen handbook. Thomas Telford, New York.
Rogel, E. (2011) Effect of inhibitors on asphaltene aggregation: A theoretical framework, Energy & fuels, 25(2), 472-481. https://doi.org/10.1021/ef100912b
Rogel, E.ve León, O. (2001) Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations, Energy & fuels, 15(5), 1077-1086. https://doi.org/10.1021/ef000152f
Sengoz, B. ve Isikyakar, G. (2008) Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen, Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013
Strausz, O. P., Mojelsky, T. W. ve Lown, E. M. (1992) The molecular structure of asphaltene: an unfolding story, Fuel, 71(12), 1355-1363. https://doi.org/10.1016/0016-2361(92)90206-4
Subramanian, D. ve Firoozabadi, A. (2015) Effect of surfactants and water on inhibition of asphaltene precipitation and deposition, International Petroleum Exhibition and Conference. Society of Petroleum Engineers, Abu Dhabi. https://doi.org/10.2118/177669-MS
Wei, D. Orlandi, E. Simon, S. Sjöblom, J. ve Suurkuusk, M. (2015) Interactions between asphaltenes and alkylbenzene-derived inhibitors investigated by isothermal titration calorimetry, Journal of Thermal Analysis and Calorimetry, 120(3), 1835-1846. doi: 10.1007/s10973-015-4542-z
Kaya Özdemir, D. (2021). LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 493-508. https://doi.org/10.17482/uumfd.881634
AMA
Kaya Özdemir D. LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. UUJFE. August 2021;26(2):493-508. doi:10.17482/uumfd.881634
Chicago
Kaya Özdemir, Derya. “LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 2 (August 2021): 493-508. https://doi.org/10.17482/uumfd.881634.
EndNote
Kaya Özdemir D (August 1, 2021) LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 493–508.
IEEE
D. Kaya Özdemir, “LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”, UUJFE, vol. 26, no. 2, pp. 493–508, 2021, doi: 10.17482/uumfd.881634.
ISNAD
Kaya Özdemir, Derya. “LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (August 2021), 493-508. https://doi.org/10.17482/uumfd.881634.
JAMA
Kaya Özdemir D. LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. UUJFE. 2021;26:493–508.
MLA
Kaya Özdemir, Derya. “LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 2, 2021, pp. 493-08, doi:10.17482/uumfd.881634.
Vancouver
Kaya Özdemir D. LİNEER ALKİL BENZEN SULFONİK ASİT MODİFİKASYONUNUN BİTÜMÜN SICAKLIK HASSASİYETİ VE VİSKOELASTİK DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. UUJFE. 2021;26(2):493-508.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr