Günümüzde bilgiye erişmek için internet ağı üzerinde milyonlarca web sitesi yaygın olarak kullanılmaktadır. Sayıları her geçen gün artan web sayfalarının daha etkin kullanılabilmesi için iyi bir şekilde kategorize edilmeleri önem kazanmıştır. Bu çalışmada, web sayfalarını yüksek doğrulukta sınıflandırabilen ikili ve çok sınıflı sınıflandırma modelleri oluşturulmuştur. Bu çalışmada, Açık Dizin Projesindeki (ODP) İngilizce web sayfalarının URL'leri ve kategorileri kullanıldı. Web sayfası metinleri URL bilgilerinden çekilerek eğitim veri kümesi oluşturuldu. Bildiğimiz kadarıyla bu, Türkçe için ilk kapsamlı web sayfası sınıflandırma veri setidir. Bu çalışmada, metin sınıflandırmada etkili olan Evrişimsel Sinir Ağı (CNN), Uzun Kısa Süreli Bellek (LSTM) ve Geçitli Tekrarlayan Birim (GRU) derin öğrenme yöntemleri kullanılmıştır. Metin sınıflandırma çalışmalarında özellik çıkarımı için yaygın olarak kullanılan n-gram yaklaşımları yerine kelime temsilleri kullanılmıştır. Bu çalışmada derin öğrenme modelleri için hiperparametre optimizasyonu yapılmıştır. En iyi parametrelerle ikili ve çok sınıflı sınıflandırma modelleri oluşturulmuştur. İkili sınıflandırma modelleri başka bir çalışmanın sonuçlarıyla ve çok sınıflı sınıflandırma modelleri kendi aralarında karşılaştırılmıştır. Tüm modellerin performansları eğitim süreleri ve f1 puanları dikkate alınarak incelenmiştir.
Today, millions of websites on the Internet are widely used to access information. For effective use of web pages with increasing numbers every day, they need to be well classified. In this study, binary and multi-class classification models have been created which can classify web pages with high accuracy. In our experiments, URLs and categories of English web pages in the Open Directory Project (ODP) were used. Training dataset was created by pulling web page texts from URL information. To our knowledge, this is the first comprehensive web page classification dataset for Turkish. In this study, Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning methods which are effective in text classification are used. Word embedding was used instead of n-gram approaches commonly used for feature extraction in text classification studies. In this study, hyper-parameter optimization was performed for deep learning models. Binary and multi-class classification models were created with the best parameters. Binary classification models were compared with the results of another study, and multi-class classification models were compared with each other. The performances of all models were examined by considering their training time and f1 scores.
Birincil Dil | İngilizce |
---|---|
Konular | Yapay Zeka |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2022 |
Gönderilme Tarihi | 31 Mart 2021 |
Kabul Tarihi | 13 Şubat 2022 |
Yayımlandığı Sayı | Yıl 2022 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr