In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.
ASHRAE. (2000) Fundamentals Handbook, American Society of Heating, Refrigerating and Air Conditioning Engineers, New York.
Aydogdu, A., Sumnu, G., Sahin, S. (2015) Effects of microwave-infrared combination drying on quality of eggplants, Food Bioprocess Technology, 8(3), 1198 – 1210.doi:10.1007/s11947-015-1484-1
Bordival, M., Schmidt, F. M., Le Maoult, Y., Velay, V. (2009) Optimization of preform temperature distribution for the stretch-blow molding of pet bottles: infrared heating and blowing modeling, Polymer Engineering and Science, 49(4), 783 – 793. doi: 10.1002/pen.21296
Cenkowski, S., Hong, J. T., Scanlon, M. G., Arntfield, S. D. (2004) Mathematical modeling of heat and mass transfer during continuous infrared micronization, Drying Technology, 22(10), 2255-2272. doi: 10.1081/DRT-200039989
Chang, P.C., Hwang, S. J. (2006) Simulation of infrared rapid surface heating for injection molding, International Journal of Heat and Mass Transfer, 49(21–22), 3846-3854. doi:10.1016/j.ijheatmasstransfer.2006.04.014
Cosson, B., Schmidt, F., Le Maoult, Y. L., Bordival, M. (2011) Infrared heating stage simulation of semi-transparent media (pet) using ray tracing method, International Journal of Material Forming, 4(1), 1 – 10. doi: 10.1007/s12289-010-0985-8
Çengel, Y.A. (2003) Heat Transfer, McGraw-Hill, New York.
Dhall, A., Datta, A. K., Torrance, K. E., Almedia, M. F. (2009)
Hasatani, M., Arai, N., Itaya Y., Onoda N. (1983) Drying of optically semitransparent materials by combined radiative-convective heating, Drying Technology, 1(2), 193-214. doi:10.1080/07373938308916778
Hasatani, M.; Itaya, Y.; Miura, K. (1988) Hybrid drying of granular materials by combined radiative and convective heating, Drying Technology, 6(1), 43-68. doi: 10.1080/07373938808916360
Lee, E. H., Yang, D. Y., Yang, W. H. (2014) Numerical modeling and experimental validation of focused surface heating using near-infrared rays with an elliptical reflector. International Journal of Heat and Mass Transfer, 78, 240 – 250. doi:10.1016/j.ijheatmasstransfer.2014.06.073
Monteix, S., Schmidt, F., Moult, Y. L., Yedder, R. B., Diraddo, R. W., Laroche, D. (2011) Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating, Journal of Materials Processing Technology, 119, 90-97. doi:10.1016/S0924-0136(01)00882-2
Mujumdar, A. S. (2015) Handbook of industrial drying, CRC Pres, New York.
Pettersson, M., Strenström, S. (2000) Modelling of an electric IR heater at transient and steady state conditions Part 1: model and validation, International Journal of Heat and Mass Transfer, 43(7), 1209-1222. doi:10.1016/S0017-9310(99)00201-X
Sandu, C. (1986) Infrared radiative drying in food engineering: a process analysis, Biotechnology Progress, 2(3), 109-119. doi: 10.1002/btpr.5420020305
Sevilgen, G., Kılıç, M. (2011) Numerical Comparison of the Heat Transfer Characteristics in an Automobile Cabin During Heating Period by Using Different Radiation Models, Uludağ University Journal of The Faculty of Engineering, 16(1), 143-159.
Schmidt, F.M., Maoult, Y. L., Monteix, S. (2003) Modelling of infrared heating of thermoplastic sheet used in thermoforming process, Journal of Materials Processing Technology, 143-144, 225-231. doi:10.1016/S0924-0136(03)00291-7
INFRARED ISITMALI GERİLİM GİDERME FIRININDA FAR YÜZEY SICAKLIĞININ DENEYSEL VE TEORİK ANALİZİ
Year 2016,
Volume: 21 Issue: 1, 97 - 108, 27.04.2016
Bu çalışmada, infrared (IR) lambalar ile çalışan bir gerilim giderme fırını deneysel ve teorik olarak incelenmiştir. Deneysel çalışmada, farklı konveyör hızları ve ısıtıcı mesafeleri için far yüzeyindeki sıcaklıklar ölçülmüştür. Teorik çalışmada ise ısı transfer ifadeleri kullanılarak bir far yüzeyindeki sıcaklıkların tahmini için bir model oluşturulmuştur. Matematik modelden elde edilen sonuçlar deneysel veriler birbirine benzerlik göstermiş ve deneysel veriler ile karşılaştırıldığında ortalama % 6.5’ lik bir fark bulunmaktadır. Matematik modelin farklı çalışma şartlarında far yüzeyinin sıcaklığını tahmin etmede kullanılabileceği gösterilmiştir.
ASHRAE. (2000) Fundamentals Handbook, American Society of Heating, Refrigerating and Air Conditioning Engineers, New York.
Aydogdu, A., Sumnu, G., Sahin, S. (2015) Effects of microwave-infrared combination drying on quality of eggplants, Food Bioprocess Technology, 8(3), 1198 – 1210.doi:10.1007/s11947-015-1484-1
Bordival, M., Schmidt, F. M., Le Maoult, Y., Velay, V. (2009) Optimization of preform temperature distribution for the stretch-blow molding of pet bottles: infrared heating and blowing modeling, Polymer Engineering and Science, 49(4), 783 – 793. doi: 10.1002/pen.21296
Cenkowski, S., Hong, J. T., Scanlon, M. G., Arntfield, S. D. (2004) Mathematical modeling of heat and mass transfer during continuous infrared micronization, Drying Technology, 22(10), 2255-2272. doi: 10.1081/DRT-200039989
Chang, P.C., Hwang, S. J. (2006) Simulation of infrared rapid surface heating for injection molding, International Journal of Heat and Mass Transfer, 49(21–22), 3846-3854. doi:10.1016/j.ijheatmasstransfer.2006.04.014
Cosson, B., Schmidt, F., Le Maoult, Y. L., Bordival, M. (2011) Infrared heating stage simulation of semi-transparent media (pet) using ray tracing method, International Journal of Material Forming, 4(1), 1 – 10. doi: 10.1007/s12289-010-0985-8
Çengel, Y.A. (2003) Heat Transfer, McGraw-Hill, New York.
Dhall, A., Datta, A. K., Torrance, K. E., Almedia, M. F. (2009)
Hasatani, M., Arai, N., Itaya Y., Onoda N. (1983) Drying of optically semitransparent materials by combined radiative-convective heating, Drying Technology, 1(2), 193-214. doi:10.1080/07373938308916778
Hasatani, M.; Itaya, Y.; Miura, K. (1988) Hybrid drying of granular materials by combined radiative and convective heating, Drying Technology, 6(1), 43-68. doi: 10.1080/07373938808916360
Lee, E. H., Yang, D. Y., Yang, W. H. (2014) Numerical modeling and experimental validation of focused surface heating using near-infrared rays with an elliptical reflector. International Journal of Heat and Mass Transfer, 78, 240 – 250. doi:10.1016/j.ijheatmasstransfer.2014.06.073
Monteix, S., Schmidt, F., Moult, Y. L., Yedder, R. B., Diraddo, R. W., Laroche, D. (2011) Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating, Journal of Materials Processing Technology, 119, 90-97. doi:10.1016/S0924-0136(01)00882-2
Mujumdar, A. S. (2015) Handbook of industrial drying, CRC Pres, New York.
Pettersson, M., Strenström, S. (2000) Modelling of an electric IR heater at transient and steady state conditions Part 1: model and validation, International Journal of Heat and Mass Transfer, 43(7), 1209-1222. doi:10.1016/S0017-9310(99)00201-X
Sandu, C. (1986) Infrared radiative drying in food engineering: a process analysis, Biotechnology Progress, 2(3), 109-119. doi: 10.1002/btpr.5420020305
Sevilgen, G., Kılıç, M. (2011) Numerical Comparison of the Heat Transfer Characteristics in an Automobile Cabin During Heating Period by Using Different Radiation Models, Uludağ University Journal of The Faculty of Engineering, 16(1), 143-159.
Schmidt, F.M., Maoult, Y. L., Monteix, S. (2003) Modelling of infrared heating of thermoplastic sheet used in thermoforming process, Journal of Materials Processing Technology, 143-144, 225-231. doi:10.1016/S0924-0136(03)00291-7
Mutlu, M., & Kılıç, M. (2016). Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(1), 97-108. https://doi.org/10.17482/uujfe.37250
AMA
Mutlu M, Kılıç M. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven. UUJFE. April 2016;21(1):97-108. doi:10.17482/uujfe.37250
Chicago
Mutlu, Mustafa, and Muhsin Kılıç. “Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21, no. 1 (April 2016): 97-108. https://doi.org/10.17482/uujfe.37250.
EndNote
Mutlu M, Kılıç M (April 1, 2016) Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21 1 97–108.
IEEE
M. Mutlu and M. Kılıç, “Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven”, UUJFE, vol. 21, no. 1, pp. 97–108, 2016, doi: 10.17482/uujfe.37250.
ISNAD
Mutlu, Mustafa - Kılıç, Muhsin. “Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21/1 (April 2016), 97-108. https://doi.org/10.17482/uujfe.37250.
JAMA
Mutlu M, Kılıç M. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven. UUJFE. 2016;21:97–108.
MLA
Mutlu, Mustafa and Muhsin Kılıç. “Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 21, no. 1, 2016, pp. 97-108, doi:10.17482/uujfe.37250.
Vancouver
Mutlu M, Kılıç M. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven. UUJFE. 2016;21(1):97-108.
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.