Research Article
BibTex RIS Cite

DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU

Year 2017, Volume: 22 Issue: 2, 35 - 52, 20.08.2017
https://doi.org/10.17482/uumfd.335423

Abstract

In this study, two different cycle systems on
the base of Organic Rankine Cycle (ORC) have been designed for heat recovery
from the industrial waste fluids at the low temperature to generate electricity
using Engineering Equation Solver (EES).The designed cycles are Simple Organic Rankine
Cycle (S-ORC) and Regenerative Organic Rankine Cycle (R-ORC). Waste fluid input
temperature and mass flow rate are fixed in each cycle. Organic working fluids
such as isopentane, isobutane, R134a, R123, R245fa, R22, R13, propane and R600
have been investigated. In order to detect the optimum working fluid, first (T1K)
and second law of thermodynamics (T2K) values have been analyzed for each
fluid. Finally, our study demonstrated that optimum fluids have been determined
for different types of cycles and fluid pressure ranges.

References

  • Bao, J. ve Zhao, L. (2013) A review of working fluid and expander selections for organic Rankine cycle, Renewable & Sustainable Energy Reviews, 24:325-342. doi:10.1016/j.rser.2013.03.040
  • Çengel, Y. ve Boles, M.A. (1989) Thermodynamics: An Engineering Approach. McGraw Hill Book Co. International Edition, Singapore, 859 p.
  • Dai, Y.P., Wang, J.F., Gao, L. (2009). Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Conversion and Management, 50(3):576-582. doi: 10.1016/j.enconman.2008.10.018
  • Etemoglu, A.B. ve Can, M. (2007) Classification of geothermal resources in Turkey by exergy analysis, Renewable & Sustainable Energy Reviews, 11:1596-1606. doi: 10.1016/j.rser.2006.01.001
  • Etemoglu, A.B. (2008) Thermodynamic evaluation of geothermal power generation systems in Turkey, Energy Sources, 30:905-916. doi:10.1080/15567030601082589
  • Heberle, F. ve Brüggemann, D. (2010) Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation, Applied Thermal Engineering, 30(11-12):1326-1332. doi:10.1016/j.applthermaleng.2010.02.012
  • Hettiarachchi, H.D. M., Golubovic, M., Worek, W.M., Ikegami, Y. (2007) Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy, 32(9): 1698-1706. doi:10.1016/j.energy.2007.01.005
  • Lee, K. M., Kuo, S. F., Chien, M. L., Shih, Y. S. (1988) Parameters analysis on organic Rankine cycle energy recovery system, Energy Conversion and Management, 28 (2):129-136. doi:10.1016/0196-8904(88)90038-6
  • Liu, B.T., Chien, K.H., Wang , C.C. (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery, Energy, 29(8): 1207-1217. doi:10.1016/j.energy.2004.01.004
  • Maizza, V. ve Maizza, A. (2001) Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Applied Thermal Engineering, 21(3): 381-390. doi:10.1016/S1359-4311(00)00044-2
  • Najjar, Y. S.H., Radhwan, A.M. (1988) Cogeneration by combining gas turbine engine with organic Rankine cycle, Heat Recovery Systems and CHP, 8 (3): 211-219. doi:10.1016/0890-4332(88)90057-9
  • Önal, A.S. (2011) Düşük sıcaklıklı atık akışkan destekli güç üretim sistemlerinin optimizasyonu, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 114 s.
  • Roy, J.P., Mishra, M.K., Misra, A. (2010) Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle, Energy , 35(12): 5049-5062. doi:10.1016/j.energy.2010.08.013
  • Schuster, A., Karellas, S., Kakaras, E., Spliethoff , H. (2009) Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 29(8-9): 1809-1817. doi:10.1016/j.applthermaleng.2008.08.016
  • Stoecker, W.F. (1989) Design of Thermal Systems, McGraw Hill Book Co., Singapore, 565 p.
  • Sun, J. ve Li,W. (2011) Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant, Applied Thermal Engineering, 31(11-12): 2032-2041. doi:10.1016/j.applthermaleng.2011.03.012
  • Wei, D., Lu, X., Lu, Z., Gu, J. (2007) Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery, Energy Conversion and Management, 48(4): 1113-1119. doi:10.1016/j.enconman.2006.10.020
  • Wongwises, S ve Chimres, N. (2005) Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator, Energy Conversion and Management, 46(1):85-100.doi:10.1016/j.enconman.2004.02.011

Optimization of Organic Rankine Cycle Systems Driven by the Low-Temperature Waste Heat Sources

Year 2017, Volume: 22 Issue: 2, 35 - 52, 20.08.2017
https://doi.org/10.17482/uumfd.335423

Abstract

In this study, two different cycle systems on
the base of Organic Rankine Cycle (ORC) have been designed for heat recovery
from the industrial waste fluids at the low temperature to generate electricity
using Engineering Equation Solver (EES).The designed cycles are Simple Organic Rankine
Cycle (S-ORC) and Regenerative Organic Rankine Cycle (R-ORC). Waste fluid input
temperature and mass flow rate are fixed in each cycle. Organic working fluids
such as isopentane, isobutane, R134a, R123, R245fa, R22, R13, propane and R600
have been investigated. In order to detect the optimum working fluid, first (T1K)
and second law of thermodynamics (T2K) values have been analyzed for each
fluid. Finally, our study demonstrated that optimum fluids have been determined
for different types of cycles and fluid pressure ranges.

References

  • Bao, J. ve Zhao, L. (2013) A review of working fluid and expander selections for organic Rankine cycle, Renewable & Sustainable Energy Reviews, 24:325-342. doi:10.1016/j.rser.2013.03.040
  • Çengel, Y. ve Boles, M.A. (1989) Thermodynamics: An Engineering Approach. McGraw Hill Book Co. International Edition, Singapore, 859 p.
  • Dai, Y.P., Wang, J.F., Gao, L. (2009). Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery, Energy Conversion and Management, 50(3):576-582. doi: 10.1016/j.enconman.2008.10.018
  • Etemoglu, A.B. ve Can, M. (2007) Classification of geothermal resources in Turkey by exergy analysis, Renewable & Sustainable Energy Reviews, 11:1596-1606. doi: 10.1016/j.rser.2006.01.001
  • Etemoglu, A.B. (2008) Thermodynamic evaluation of geothermal power generation systems in Turkey, Energy Sources, 30:905-916. doi:10.1080/15567030601082589
  • Heberle, F. ve Brüggemann, D. (2010) Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation, Applied Thermal Engineering, 30(11-12):1326-1332. doi:10.1016/j.applthermaleng.2010.02.012
  • Hettiarachchi, H.D. M., Golubovic, M., Worek, W.M., Ikegami, Y. (2007) Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy, 32(9): 1698-1706. doi:10.1016/j.energy.2007.01.005
  • Lee, K. M., Kuo, S. F., Chien, M. L., Shih, Y. S. (1988) Parameters analysis on organic Rankine cycle energy recovery system, Energy Conversion and Management, 28 (2):129-136. doi:10.1016/0196-8904(88)90038-6
  • Liu, B.T., Chien, K.H., Wang , C.C. (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery, Energy, 29(8): 1207-1217. doi:10.1016/j.energy.2004.01.004
  • Maizza, V. ve Maizza, A. (2001) Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Applied Thermal Engineering, 21(3): 381-390. doi:10.1016/S1359-4311(00)00044-2
  • Najjar, Y. S.H., Radhwan, A.M. (1988) Cogeneration by combining gas turbine engine with organic Rankine cycle, Heat Recovery Systems and CHP, 8 (3): 211-219. doi:10.1016/0890-4332(88)90057-9
  • Önal, A.S. (2011) Düşük sıcaklıklı atık akışkan destekli güç üretim sistemlerinin optimizasyonu, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 114 s.
  • Roy, J.P., Mishra, M.K., Misra, A. (2010) Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle, Energy , 35(12): 5049-5062. doi:10.1016/j.energy.2010.08.013
  • Schuster, A., Karellas, S., Kakaras, E., Spliethoff , H. (2009) Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 29(8-9): 1809-1817. doi:10.1016/j.applthermaleng.2008.08.016
  • Stoecker, W.F. (1989) Design of Thermal Systems, McGraw Hill Book Co., Singapore, 565 p.
  • Sun, J. ve Li,W. (2011) Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant, Applied Thermal Engineering, 31(11-12): 2032-2041. doi:10.1016/j.applthermaleng.2011.03.012
  • Wei, D., Lu, X., Lu, Z., Gu, J. (2007) Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery, Energy Conversion and Management, 48(4): 1113-1119. doi:10.1016/j.enconman.2006.10.020
  • Wongwises, S ve Chimres, N. (2005) Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator, Energy Conversion and Management, 46(1):85-100.doi:10.1016/j.enconman.2004.02.011
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Serdar Önal This is me

Akın Burak Etemoğlu

Muhiddin Can

Publication Date August 20, 2017
Submission Date October 20, 2016
Acceptance Date May 11, 2017
Published in Issue Year 2017 Volume: 22 Issue: 2

Cite

APA Önal, A. S., Etemoğlu, A. B., & Can, M. (2017). DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 35-52. https://doi.org/10.17482/uumfd.335423
AMA Önal AS, Etemoğlu AB, Can M. DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU. UUJFE. August 2017;22(2):35-52. doi:10.17482/uumfd.335423
Chicago Önal, Ahmet Serdar, Akın Burak Etemoğlu, and Muhiddin Can. “DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, no. 2 (August 2017): 35-52. https://doi.org/10.17482/uumfd.335423.
EndNote Önal AS, Etemoğlu AB, Can M (August 1, 2017) DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 35–52.
IEEE A. S. Önal, A. B. Etemoğlu, and M. Can, “DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU”, UUJFE, vol. 22, no. 2, pp. 35–52, 2017, doi: 10.17482/uumfd.335423.
ISNAD Önal, Ahmet Serdar et al. “DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (August 2017), 35-52. https://doi.org/10.17482/uumfd.335423.
JAMA Önal AS, Etemoğlu AB, Can M. DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU. UUJFE. 2017;22:35–52.
MLA Önal, Ahmet Serdar et al. “DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 22, no. 2, 2017, pp. 35-52, doi:10.17482/uumfd.335423.
Vancouver Önal AS, Etemoğlu AB, Can M. DÜŞÜK SICAKLIKLI ATIK AKIŞKAN DESTEKLİ ORGANİK RANKİNE ÇEVRİMLERİNİN OPTİMİZASYONU. UUJFE. 2017;22(2):35-52.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.