Research Article
BibTex RIS Cite

BİR BOYUTLU TAŞINIM SÜREÇLERİNDE ÖLÇEKLEME ANALİZİ VE KENDİNE BENZEŞİM

Year 2018, Volume: 23 Issue: 1, 235 - 246, 24.04.2018
https://doi.org/10.17482/uumfd.330886

Abstract

Konveksiyon-difüzyon
denklemi
nehirlerdeki kirleticilerin
yayılması, çözülmüş maddenin haliç ve sahil sularına
dağılımı, gözenekli ortamda akış ve taşınım, ve atmosferdeki
kirleticilerin taşınması gibi yer bilimlerindeki
çeşitli akım ve taşınım süreçlerini modellemek için yaygın bir şekilde
kullanılmaktadır. Bu çalışmada tek boyutlu konveksiyon-difüzyon denkleminin
kendine benzeşim koşulları tek parametreli Lie grubu nokta
ölçeklendirme dönüşümleri
kullanılarak araştırılmıştır. Sayısal
simülasyonlarla, tek boyutlu noktasal kaynaklı taşıma sürecinin
ölçeklendirilmiş bir mekanla özdeşleşebileceği gösterilmiştir. Ölçeklendirme
parametresi veya uzunluk boyutunun ölçekleme
katsayısı değiştirilerek daha
büyük veya daha küçük mekansal boyutlarda taşınım
sürecinin gerçekleştiği simetrik problemler elde edebilir. Lie grubu
ölçeklendirme yaklaşımı
ile elde edilen ölçeklendirme ilişkileri, farklı mekan ve zaman ölçeklerindeki
taşınım süreçlerini anlamamızı kolaylaştırabilir ve bir boyutlu taşınımın
önemli olduğu süreçlerinde fiziksel modellerin oluşturulmasında ilave esneklik
sağlayabilir.

References

  • Bear, J. (1976) Hydraulics of Groundwater, Mc Graw Hill, New York.
  • Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2007) Transport Phenomena, J. Wiley, New York.
  • Bluman, G.W., Anco, S.C. (2002) Symmetry and integration methods for differential equations, Applied mathematical sciences, Springer, New York.
  • Bluman, C.E., Cole, J.D. (1974) Similarity methods for differential equations, Springer-Verlag, New York.
  • Bolster, D.T., Tartakovsky, D.M., Dentz, M. (2007) Analytical models of contaminant transport in coastal aquifers, Advances in Water Resources, 30(9), 1962-1972. doi:10.1016/j.advwatres.2007.03.007
  • Buckingham, E. (1914) On physically similar systems – Illustrations of the use of dimensional equations, Physical Review, 4, 345–376. doi:10.1103/PhysRev.4.345
  • Carr, K., Ercan, A., Kavvas, M.L. (2015) Scaling and Self-Similarity of One-dimensional Unsteady Suspended Sediment Transport with Emphasis on Unscaled Sediment Material Properties, Journal of Hydraulic Engineering, 141(5), 04015003. doi: 10.1061/(ASCE)HY.1943-7900.0000994.
  • Chatwin, P.C., Allen, C.M. (1985) Mathematical models of dispersion in rivers and estuaries, Annual Review of Fluid Mechanics, 17(1), 119-49. doi:10.1146/annurev.fl.17.010185.001003
  • Ercan, A., Kavvas, M.L., Haltas, I. (2014) Scaling and Self-similarity In One-Dimensional Unsteady Open Channel Flow, Hydrological Processes, 28(5), 2721-2737. doi:10.1002/hyp.9822
  • Ercan, A., and Kavvas, M.L. (2015a) Scaling and Self-similarity in Two-Dimensional Hydrodynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 075404. doi:10.1063/1.4913852
  • Ercan, A., Kavvas, M.L. (2015b) Self-similarity in Navier-Stokes Equations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), 123126. doi:10.1063/1.4938762
  • Ermak, D.L. (1977) An analytical model for air pollutant transport and deposition from a point source, Atmospheric Environment, 11(3), 231-237. doi:10.1016/0004-6981(77)90140-8
  • Fattah, Q.N., Hoopes, J.A. (1985) Dispersion in anisotropic, homogeneous, porous media, Journal of Hydraulic Engineering, 111(5), 810-27. doi:10.1061/(ASCE)0733-9429
  • Fischer, H.B. (1966) A Note on the One-Dimensional Dispersion Model, International Journal of Air and Water Pollution, 10, 443-452.
  • Guvanasen, V., Volker, R.E. (1983) Numerical solutions for solute transport in unconfined aquifers, International Journal for Numerical Methods in Fluids, 3(2), 103-123. doi:10.1002/fld.1650030203
  • Haltas, I., Kavvas, M.L. (2011) Scale invariance and self-similarity in hydrologic processes in space and time, Journal of Hydrologic Engineering, 16(1), 51–63. doi:10.1061/ASCEHE.1943-5584.0000289
  • Hansen, A.G. (1964) Similarity analysis of boundary value problems in engineering, Prentice Hall Inc, New Jersey.
  • Heller, V. (2011) Scale effects in physical hydraulic engineering models, Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914
  • Holzbecher, E. (2007) Environmental Modeling Using MATLAB, Springer-Verlag, Berlin, Germany.
  • Ibragimov, N.H. (1994) Handbook of Lie group analysis of differential equations, Volume I, Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Roton, U.S.A.
  • Ibragimov, N.H. (1995) Handbook of Lie group analysis of differential equations. Volume II, Applications in Engineering and Physical Sciences, CRC Press, Boca Roton, USA.
  • James, I.D. (2002) Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review, Environmental Modelling & Software, 17(4), 363-385.
  • Kumar, N. (1983) Unsteady flow against dispersion in finite porous media, Journal of Hydrology, 63(3-4), 345-358. doi:10.1016/0022-1694(83)90050-1
  • Maloszewski, P., Benischke, R., Harum, T., Zojer, H. (1994) Estimation of solute transport parameters in heterogen groundwater system of a karstic aquifer using artificial tracer experiments. In : Water Down Under 94, Groundwater Papers, Preprints of Papers. Barton, ACT, Institution of Engineers, Australia, 105-111.
  • Martins, R. (1989) Recent Advances in Hydraulic Physical Modelling, NATO ASI Series E, Applied Sciences, Vol.165, Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Parlarge, J.Y. (1980) Water transport in soils, Ann. Rev. Fluids Mech, 2, 77–102. doi:10.1146/annurev.fl.12.010180.000453
  • Polsinelli, J., Kavvas, M. L. (2016) A comparison of the modern Lie scaling method to classical scaling techniques, Hydrology and Earth System Sciences, 20, 2669-2678. doi:10.5194/hess-20-2669-2016
  • Polyanin, A.D., Manzhirov, A.V. (2006) Handbook of Mathematics for Engineers and Scientists, 1st edn., Chapman & Hall/CRC, FL, USA.
  • Rayleigh, J.W.S. (1892) On the question of the stability of the flow of liquids, Philosophical magazine, 34, 59-70.
  • Salmon, J.R., Liggett, J.A., Gallagher, R.H. (1980) Dispersion analysis in homogeneous lakes, International Journal for Numerical Methods in Engineering, 15(11), 1627-42. doi:10.1002/nme.1620151106
  • Sedov, L.I. (1959) Similarity and Dimensional Methods in Mechanics, Academic Press, New York, U.S.
  • Sukhodolov, A.N., Nikora, V.I., Rowinski, P.M., Czernuszenko, W. (1997) A case study of longitudinal dispersion in small lowland rivers, Water Environment Res., 69(7), 1246–1253.
  • Wang, H., Persaud, N. (2004) Miscible displacement of initial distributions in laboratory columns, J. Soil Sci. Soc. of Am., 68(5), 1471–1478.
  • Yalin, M.S. (1971) Theory of hydraulic models, Macmillan Press, London, U.K.
  • Zlatev, Z. (2012) Computer Treatment of Large Air Pollution Models, Springer, Dardrecht, Netherlands.

Scaling Analysis and Self-Similarity of One-Dimensional Transport Process

Year 2018, Volume: 23 Issue: 1, 235 - 246, 24.04.2018
https://doi.org/10.17482/uumfd.330886

Abstract

Convection-diffusion equation has been widely used to model a variety of
flow and transport processes in earth sciences, including spread of pollutants
in rivers, dispersion of dissolved material in estuaries and coastal waters, flow
and transport in porous media, and transport of pollutants in the atmosphere.
In this study, the conditions under which one-dimensional convection-diffusion
equation becomes self-similar are investigated by utilizing one-parameter Lie
group of point scaling transformations. By the numerical simulations, it is
shown that the one-dimensional point source transport process in an original
domain can be self-similar with that of a scaled domain. In fact, by changing
the scaling parameter or the scaling exponents of the length dimension, one can
obtain several different down-scaled or up-scaled self-similar domains. The
derived scaling relations obtained by the Lie group scaling approach may
provide additional understanding of transport phenomena at different space and
time scales and may provide additional flexibility in setting up physical
models in which one dimensional transport is significant.

References

  • Bear, J. (1976) Hydraulics of Groundwater, Mc Graw Hill, New York.
  • Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2007) Transport Phenomena, J. Wiley, New York.
  • Bluman, G.W., Anco, S.C. (2002) Symmetry and integration methods for differential equations, Applied mathematical sciences, Springer, New York.
  • Bluman, C.E., Cole, J.D. (1974) Similarity methods for differential equations, Springer-Verlag, New York.
  • Bolster, D.T., Tartakovsky, D.M., Dentz, M. (2007) Analytical models of contaminant transport in coastal aquifers, Advances in Water Resources, 30(9), 1962-1972. doi:10.1016/j.advwatres.2007.03.007
  • Buckingham, E. (1914) On physically similar systems – Illustrations of the use of dimensional equations, Physical Review, 4, 345–376. doi:10.1103/PhysRev.4.345
  • Carr, K., Ercan, A., Kavvas, M.L. (2015) Scaling and Self-Similarity of One-dimensional Unsteady Suspended Sediment Transport with Emphasis on Unscaled Sediment Material Properties, Journal of Hydraulic Engineering, 141(5), 04015003. doi: 10.1061/(ASCE)HY.1943-7900.0000994.
  • Chatwin, P.C., Allen, C.M. (1985) Mathematical models of dispersion in rivers and estuaries, Annual Review of Fluid Mechanics, 17(1), 119-49. doi:10.1146/annurev.fl.17.010185.001003
  • Ercan, A., Kavvas, M.L., Haltas, I. (2014) Scaling and Self-similarity In One-Dimensional Unsteady Open Channel Flow, Hydrological Processes, 28(5), 2721-2737. doi:10.1002/hyp.9822
  • Ercan, A., and Kavvas, M.L. (2015a) Scaling and Self-similarity in Two-Dimensional Hydrodynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 075404. doi:10.1063/1.4913852
  • Ercan, A., Kavvas, M.L. (2015b) Self-similarity in Navier-Stokes Equations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), 123126. doi:10.1063/1.4938762
  • Ermak, D.L. (1977) An analytical model for air pollutant transport and deposition from a point source, Atmospheric Environment, 11(3), 231-237. doi:10.1016/0004-6981(77)90140-8
  • Fattah, Q.N., Hoopes, J.A. (1985) Dispersion in anisotropic, homogeneous, porous media, Journal of Hydraulic Engineering, 111(5), 810-27. doi:10.1061/(ASCE)0733-9429
  • Fischer, H.B. (1966) A Note on the One-Dimensional Dispersion Model, International Journal of Air and Water Pollution, 10, 443-452.
  • Guvanasen, V., Volker, R.E. (1983) Numerical solutions for solute transport in unconfined aquifers, International Journal for Numerical Methods in Fluids, 3(2), 103-123. doi:10.1002/fld.1650030203
  • Haltas, I., Kavvas, M.L. (2011) Scale invariance and self-similarity in hydrologic processes in space and time, Journal of Hydrologic Engineering, 16(1), 51–63. doi:10.1061/ASCEHE.1943-5584.0000289
  • Hansen, A.G. (1964) Similarity analysis of boundary value problems in engineering, Prentice Hall Inc, New Jersey.
  • Heller, V. (2011) Scale effects in physical hydraulic engineering models, Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914
  • Holzbecher, E. (2007) Environmental Modeling Using MATLAB, Springer-Verlag, Berlin, Germany.
  • Ibragimov, N.H. (1994) Handbook of Lie group analysis of differential equations, Volume I, Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Roton, U.S.A.
  • Ibragimov, N.H. (1995) Handbook of Lie group analysis of differential equations. Volume II, Applications in Engineering and Physical Sciences, CRC Press, Boca Roton, USA.
  • James, I.D. (2002) Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review, Environmental Modelling & Software, 17(4), 363-385.
  • Kumar, N. (1983) Unsteady flow against dispersion in finite porous media, Journal of Hydrology, 63(3-4), 345-358. doi:10.1016/0022-1694(83)90050-1
  • Maloszewski, P., Benischke, R., Harum, T., Zojer, H. (1994) Estimation of solute transport parameters in heterogen groundwater system of a karstic aquifer using artificial tracer experiments. In : Water Down Under 94, Groundwater Papers, Preprints of Papers. Barton, ACT, Institution of Engineers, Australia, 105-111.
  • Martins, R. (1989) Recent Advances in Hydraulic Physical Modelling, NATO ASI Series E, Applied Sciences, Vol.165, Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Parlarge, J.Y. (1980) Water transport in soils, Ann. Rev. Fluids Mech, 2, 77–102. doi:10.1146/annurev.fl.12.010180.000453
  • Polsinelli, J., Kavvas, M. L. (2016) A comparison of the modern Lie scaling method to classical scaling techniques, Hydrology and Earth System Sciences, 20, 2669-2678. doi:10.5194/hess-20-2669-2016
  • Polyanin, A.D., Manzhirov, A.V. (2006) Handbook of Mathematics for Engineers and Scientists, 1st edn., Chapman & Hall/CRC, FL, USA.
  • Rayleigh, J.W.S. (1892) On the question of the stability of the flow of liquids, Philosophical magazine, 34, 59-70.
  • Salmon, J.R., Liggett, J.A., Gallagher, R.H. (1980) Dispersion analysis in homogeneous lakes, International Journal for Numerical Methods in Engineering, 15(11), 1627-42. doi:10.1002/nme.1620151106
  • Sedov, L.I. (1959) Similarity and Dimensional Methods in Mechanics, Academic Press, New York, U.S.
  • Sukhodolov, A.N., Nikora, V.I., Rowinski, P.M., Czernuszenko, W. (1997) A case study of longitudinal dispersion in small lowland rivers, Water Environment Res., 69(7), 1246–1253.
  • Wang, H., Persaud, N. (2004) Miscible displacement of initial distributions in laboratory columns, J. Soil Sci. Soc. of Am., 68(5), 1471–1478.
  • Yalin, M.S. (1971) Theory of hydraulic models, Macmillan Press, London, U.K.
  • Zlatev, Z. (2012) Computer Treatment of Large Air Pollution Models, Springer, Dardrecht, Netherlands.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ali Ercan 0000-0003-1052-4302

Publication Date April 24, 2018
Submission Date July 25, 2017
Acceptance Date March 19, 2018
Published in Issue Year 2018 Volume: 23 Issue: 1

Cite

APA Ercan, A. (2018). Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 235-246. https://doi.org/10.17482/uumfd.330886
AMA Ercan A. Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. UUJFE. April 2018;23(1):235-246. doi:10.17482/uumfd.330886
Chicago Ercan, Ali. “Scaling Analysis and Self-Similarity of One-Dimensional Transport Process”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 1 (April 2018): 235-46. https://doi.org/10.17482/uumfd.330886.
EndNote Ercan A (April 1, 2018) Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 1 235–246.
IEEE A. Ercan, “Scaling Analysis and Self-Similarity of One-Dimensional Transport Process”, UUJFE, vol. 23, no. 1, pp. 235–246, 2018, doi: 10.17482/uumfd.330886.
ISNAD Ercan, Ali. “Scaling Analysis and Self-Similarity of One-Dimensional Transport Process”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/1 (April 2018), 235-246. https://doi.org/10.17482/uumfd.330886.
JAMA Ercan A. Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. UUJFE. 2018;23:235–246.
MLA Ercan, Ali. “Scaling Analysis and Self-Similarity of One-Dimensional Transport Process”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 1, 2018, pp. 235-46, doi:10.17482/uumfd.330886.
Vancouver Ercan A. Scaling Analysis and Self-Similarity of One-Dimensional Transport Process. UUJFE. 2018;23(1):235-46.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.