Research Article
BibTex RIS Cite

GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ

Year 2018, Volume: 23 Issue: 3, 49 - 60, 31.12.2018
https://doi.org/10.17482/uumfd.421199

Abstract

Gaz kazancı, detektörden elde edilen sinyalin
kalitesini belirleyen en önemli sayısal niceliklerden biridir. Sinyal oluşumu
sırasında ortaya çıkan uyarılmış atomlar, Penning transferleri ve geri-besleme süreçleriyle
kazançta kayda değer artışlara olanak sağlarlar. Bu süreçlerin mekanizmasını
incelemek için literatürdeki argon-izobütan gaz karışımlarında ölçülen kazanç
verilerinin benzetişimi yapıldı.

References

  • Biagi, S. F. (1999), Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nucl. Instrum. Meth. A 421(1–2), 234–240. doi: 10.1016/S0168-9002(98)01233-9
  • Bidault, J. -M. ve diğ. (2007), The first applications of newly developed gaseous detectors with resistive electrodes for UV imaging in daylight conditions, Nucl. Instrum. Meth. A 580(2–3), 1036–1041. doi: 10.1016/j.nima.2007.06.061
  • Bronić, I. J. ve Grosswendt, B. (1996), Ionization yield formation in argon-isobutane mixtures as measured by a proportional-counter method, Nucl. Instrum. Meth. B 117(1–2) 5–17. doi: 10.1016/0168-583X(96)00222-4
  • Bronić, I. J. ve Grosswendt, B. (1998), Gas amplification and ionization coefficients in isobutane and argon–isobutane mixtures at low gas pressures, Nucl. Instrum. Meth. B 142(3) 219–244. doi: 10.1016/S0168-583X(98)00286-9
  • Charpak, G. ve diğ. (2007), Development of new hole-type avalanche detectors and the first results of their applications, IEEE Nuclear Science Symposium Conference Record MP4(6), 4649–4657. doi: 10.1109/NSSMIC.2007.4437145
  • Charpak, G. ve diğ. (2010), Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions, arXiv:1002.4732, 1–25.
  • Charpak, G. ve Sauli, F. (1978), The multistep avalanche chamber: A new high-rate, high-accuracy gaseous detector, Phys. Lett. B 78(4), 523–528. doi: 10.1016/0370-2693(78)90502-6
  • Charpak, G., Benaben, P., Breuil, P., Peskov, V. (2008), Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification, J. Instrum. 3(P02006), 1–18. doi: 10.1088/1748-0221/3/02/P02006
  • Charpak, G., G., Bouclier, R., Bressani, T., Favier, J. ve Zupančič, Č. (1968) The use of multiwire proportional counters to select and localize charged particles, Nucl. Instr. and Meth. 62(3), 262–268. doi: 10.1016/0029-554X(68)90371-6
  • Danielsson, M. ve diğ. (2004), Novel gaseous detectors for medical imaging, Nucl. Instrum. Meth. A 383(1–2), 406–410. doi: 10.1016/j.nima.2003.11.038
  • Druyvesteyn, M. J. ve Penning, F. M. (1940), The Mechanism of Electrical Discharges in Gases of Low Pressure, Rev. Mod. Phys. 12(2) 87–124. doi: 10.1103/RevModPhys.12.87; Erratum (1941) Rev. Mod. Phys. 13(72). doi: 10.1103/RevModPhys.13.72
  • Emelyanov, A. N., Aleksandrovich, N. L., Sunyaev, R. A. (2000), A catalog of X-ray sources as observed by the TTM/COMIS telescope onboard the Mir-Kvant observatory in 1988–1998, Astronomy Letters 26(5), 297–308. doi: 10.1134/1.20394
  • Fetal, S. ve diğ. (2003), Dose imaging in radiotherapy with an Ar–CF4 filled scintillating GEM, Nucl. Instrum. Meth. A 513(1–2), 42–46. doi: 10.1016/S0168-9002(03)02133-8
  • Fonte, P. ve diğ. (2005), Novel single photon detectors for UV imaging, Nucl. Instrum. Meth. A 553(1–2), 30–34. doi: 10.1016/j.nima.2005.08.002
  • Francke, T. ve diğ. (2001), Dose reduction in medical X-ray imaging using noise free photon counting, Nucl. Instrum. Meth. A 471(1–2), 85–87. doi: 10.1016/S0168-9002(01)00920-2
  • Geiger, H. ve Müller W. (1928) Das Elektronenezählrohr, Phys. Zeits. 29, 839–841.
  • Geiger, H. ve Rutherford, E. (1908) An electrical method of counting the number of α-particles from radio-active substances, Proc. Royal Soc. A 81(546), 141–161. doi: 10.1098/rspa.1908.0065
  • Giacconi, R. (2003), Nobel Lecture: The dawn of x-ray astronomy, Rev. Mod. Phys. 75(3), 995–1010. doi: 10.1103/RevModPhys.75.995
  • Giomataris, Y., Rebourgeard, Ph., Robert, J.P., Charpak, G. (1996), MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nucl. Instrum. Meth. A 376(1), 29–35. doi: 10.1016/0168-9002(96)00175-1
  • Grupen, C. (2008), Particle Detectors, Cambridge University Press.
  • Hagmann, C., Bernstein, A. (2004), Two-phase emission detector for measuring coherent neutrino-nucleus scattering, IEEE Trans. Nucl. Sci. 51(5), 2151–2154. doi: 10.1109/TNS.2004.836061
  • Houry, M. ve diğ. (2006), DEMIN: A neutron spectrometer, Micromegas-type, for inertial confinement fusion experiments, Nucl. Instrum. Meth. A 557(2), 648–656. doi: 10.1016/j.nima.2005.11.184
  • http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/, erişim tarihi 26.04.2018, konu 1992 Nobel Fizik Ödülü.
  • Iacobaeus, C. ve diğ. (2001), A novel portal imaging device for advanced radiation therapy, IEEE Trans. Nucl. Sci. 48(4), 1496–1502. doi: 10.1109/23.958386
  • Iacobaeus, C. ve diğ. (2006), A high position resolution X-ray detector: an "Edge on" illuminated capillary plate combined with a gas amplification structure, IEEE Trans. Nucl. Sci. 53(2), 554–561. doi: 10.1109/TNS.2006.872635
  • Knoll, G. F. (2000), Radiation detection and measurements, John Willey and Sons, Inc., New York.
  • Mermigka, K. (2008), Simulation studies at the MICROMEGAS detector and MICROPATTERN applications in medicine, Collaboration with CERN, Demokritos and N.T.U.A, Master Thesis (I.D. 1289), 256 sayfa.
  • Ostling, J. ve diğ. (2003), Study of hole-type gas multiplication structures for portal imaging and other high count rate applications, IEEE Trans. Nucl. Sci. 50(4), 809–819. doi: 10.1109/TNS.2003.814562
  • Pacella, D., Bellazzini, R., Brez, A., Finkenthal, M. (2006), Soft X-ray 2-D imaging with time resolution of microseconds and continuous frame rate, J. Instrum. 1(P09001), 1–12. doi: 10.1088/1748-0221/1/09/P09001
  • Pancin, J., ve diğ. (2004), Measurement of the n_TOF beam profile with a micromegas detector, Nucl. Instrum. Meth. A 524(1–3), 102–114. doi: 10.1016/j.nima.2004.01.055
  • Penning, F. M. (1928), Über den Einfluß sehr geringer Beimischungen auf die Zündspannung der Edelgase, Zeitschrift für Physik 46(5–6), 335–348. doi: 10.1007/BF01390558
  • Penning, F. M. (1934), The starting potential of the glow discharge in neon argon mixtures between large parallel plates: II. Discussion of the ionisation and excitation by electrons and metastable atoms, Physica 1(7–12), 1028–1044. doi: 10.1016/S0031-8914(34)80298-4
  • Ramsey, B. D. ve diğ. (1996), A large-area microstrip-gas-counter for X-ray astronomy, Nucl. Instrum. Meth. A 383(2–3), 424–430. doi: 10.1016/S0168-9002(96)00853-4
  • Rodionov, I. ve diğ. (2005), Advanced gaseous photodetectors for hyperspectroscopy and other applications, IEEE Nuclear Science Symposium Conference Record J04(2), 3045–3049. doi: 10.1109/NSSMIC.2005.1596972
  • Rubbia, A. (2004), Experiments For CP-Violation: A Giant Liquid Argon Scintillation, Cerenkov And Charge Imaging Experiment ?, arXiv: hep-ph/0402110, 1–31.
  • Rubbia, A. (2006), ArDM: a ton-scale liquid Argon experiment for direct detection of Dark Matter in the Universe, J. Phys. Conf. Ser. 39, 129–132. doi: 10.1088/1742-6596/39/1/028
  • Sauli, F. (1997), GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Meth. A 386(2–3), 531–534. doi: 10.1016/S0168-9002(96)01172-2
  • Sauli, F. (2014), Gaseous Radiation Detectors: Fundamentals and Applications, Cambridge University Press
  • Spindt, C. A., Brodie, I., Humphrey, L., Westerberg, E. R. (1976), Physical properties of thin‐film field emission cathodes with molybdenum cones, J. Appl. Phys. 47, 5248–5263. doi: 10.1063/1.322600
  • Veenhof, R. (1998), Garfield, recent developments, Nucl. Instrum. Meth. A 419(2–3), 726–730. doi: 10.1016/S0168-9002(98)00851-1
  • Walenta, A. H. (1979), The Time Expansion Chamber and Single Ionization Cluster Measurement, IEEE Trans. Nucl. Sci. 26(1), 73–80. doi: 10.1109/TNS.1979.4329616

Investigation of Working Performance and Stability of Gaseous Particle Detectors

Year 2018, Volume: 23 Issue: 3, 49 - 60, 31.12.2018
https://doi.org/10.17482/uumfd.421199

Abstract

Gas gain is one
of the most important numerical quantities, which determines the quality of the
signal obtained from a detector. The excited atoms, created during the signal
generation, may cause dramatic increases on the gas gain via Penning transfers
and feedback processes. The mechanisms of these processes have been
investigated by the simulations of the experimental gain data measured in
argon-isobutane gas mixtures given in literature.

References

  • Biagi, S. F. (1999), Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields, Nucl. Instrum. Meth. A 421(1–2), 234–240. doi: 10.1016/S0168-9002(98)01233-9
  • Bidault, J. -M. ve diğ. (2007), The first applications of newly developed gaseous detectors with resistive electrodes for UV imaging in daylight conditions, Nucl. Instrum. Meth. A 580(2–3), 1036–1041. doi: 10.1016/j.nima.2007.06.061
  • Bronić, I. J. ve Grosswendt, B. (1996), Ionization yield formation in argon-isobutane mixtures as measured by a proportional-counter method, Nucl. Instrum. Meth. B 117(1–2) 5–17. doi: 10.1016/0168-583X(96)00222-4
  • Bronić, I. J. ve Grosswendt, B. (1998), Gas amplification and ionization coefficients in isobutane and argon–isobutane mixtures at low gas pressures, Nucl. Instrum. Meth. B 142(3) 219–244. doi: 10.1016/S0168-583X(98)00286-9
  • Charpak, G. ve diğ. (2007), Development of new hole-type avalanche detectors and the first results of their applications, IEEE Nuclear Science Symposium Conference Record MP4(6), 4649–4657. doi: 10.1109/NSSMIC.2007.4437145
  • Charpak, G. ve diğ. (2010), Performance of wire-type Rn detectors operated with gas gain in ambient air in view of its possible application to early earthquake predictions, arXiv:1002.4732, 1–25.
  • Charpak, G. ve Sauli, F. (1978), The multistep avalanche chamber: A new high-rate, high-accuracy gaseous detector, Phys. Lett. B 78(4), 523–528. doi: 10.1016/0370-2693(78)90502-6
  • Charpak, G., Benaben, P., Breuil, P., Peskov, V. (2008), Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification, J. Instrum. 3(P02006), 1–18. doi: 10.1088/1748-0221/3/02/P02006
  • Charpak, G., G., Bouclier, R., Bressani, T., Favier, J. ve Zupančič, Č. (1968) The use of multiwire proportional counters to select and localize charged particles, Nucl. Instr. and Meth. 62(3), 262–268. doi: 10.1016/0029-554X(68)90371-6
  • Danielsson, M. ve diğ. (2004), Novel gaseous detectors for medical imaging, Nucl. Instrum. Meth. A 383(1–2), 406–410. doi: 10.1016/j.nima.2003.11.038
  • Druyvesteyn, M. J. ve Penning, F. M. (1940), The Mechanism of Electrical Discharges in Gases of Low Pressure, Rev. Mod. Phys. 12(2) 87–124. doi: 10.1103/RevModPhys.12.87; Erratum (1941) Rev. Mod. Phys. 13(72). doi: 10.1103/RevModPhys.13.72
  • Emelyanov, A. N., Aleksandrovich, N. L., Sunyaev, R. A. (2000), A catalog of X-ray sources as observed by the TTM/COMIS telescope onboard the Mir-Kvant observatory in 1988–1998, Astronomy Letters 26(5), 297–308. doi: 10.1134/1.20394
  • Fetal, S. ve diğ. (2003), Dose imaging in radiotherapy with an Ar–CF4 filled scintillating GEM, Nucl. Instrum. Meth. A 513(1–2), 42–46. doi: 10.1016/S0168-9002(03)02133-8
  • Fonte, P. ve diğ. (2005), Novel single photon detectors for UV imaging, Nucl. Instrum. Meth. A 553(1–2), 30–34. doi: 10.1016/j.nima.2005.08.002
  • Francke, T. ve diğ. (2001), Dose reduction in medical X-ray imaging using noise free photon counting, Nucl. Instrum. Meth. A 471(1–2), 85–87. doi: 10.1016/S0168-9002(01)00920-2
  • Geiger, H. ve Müller W. (1928) Das Elektronenezählrohr, Phys. Zeits. 29, 839–841.
  • Geiger, H. ve Rutherford, E. (1908) An electrical method of counting the number of α-particles from radio-active substances, Proc. Royal Soc. A 81(546), 141–161. doi: 10.1098/rspa.1908.0065
  • Giacconi, R. (2003), Nobel Lecture: The dawn of x-ray astronomy, Rev. Mod. Phys. 75(3), 995–1010. doi: 10.1103/RevModPhys.75.995
  • Giomataris, Y., Rebourgeard, Ph., Robert, J.P., Charpak, G. (1996), MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nucl. Instrum. Meth. A 376(1), 29–35. doi: 10.1016/0168-9002(96)00175-1
  • Grupen, C. (2008), Particle Detectors, Cambridge University Press.
  • Hagmann, C., Bernstein, A. (2004), Two-phase emission detector for measuring coherent neutrino-nucleus scattering, IEEE Trans. Nucl. Sci. 51(5), 2151–2154. doi: 10.1109/TNS.2004.836061
  • Houry, M. ve diğ. (2006), DEMIN: A neutron spectrometer, Micromegas-type, for inertial confinement fusion experiments, Nucl. Instrum. Meth. A 557(2), 648–656. doi: 10.1016/j.nima.2005.11.184
  • http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/, erişim tarihi 26.04.2018, konu 1992 Nobel Fizik Ödülü.
  • Iacobaeus, C. ve diğ. (2001), A novel portal imaging device for advanced radiation therapy, IEEE Trans. Nucl. Sci. 48(4), 1496–1502. doi: 10.1109/23.958386
  • Iacobaeus, C. ve diğ. (2006), A high position resolution X-ray detector: an "Edge on" illuminated capillary plate combined with a gas amplification structure, IEEE Trans. Nucl. Sci. 53(2), 554–561. doi: 10.1109/TNS.2006.872635
  • Knoll, G. F. (2000), Radiation detection and measurements, John Willey and Sons, Inc., New York.
  • Mermigka, K. (2008), Simulation studies at the MICROMEGAS detector and MICROPATTERN applications in medicine, Collaboration with CERN, Demokritos and N.T.U.A, Master Thesis (I.D. 1289), 256 sayfa.
  • Ostling, J. ve diğ. (2003), Study of hole-type gas multiplication structures for portal imaging and other high count rate applications, IEEE Trans. Nucl. Sci. 50(4), 809–819. doi: 10.1109/TNS.2003.814562
  • Pacella, D., Bellazzini, R., Brez, A., Finkenthal, M. (2006), Soft X-ray 2-D imaging with time resolution of microseconds and continuous frame rate, J. Instrum. 1(P09001), 1–12. doi: 10.1088/1748-0221/1/09/P09001
  • Pancin, J., ve diğ. (2004), Measurement of the n_TOF beam profile with a micromegas detector, Nucl. Instrum. Meth. A 524(1–3), 102–114. doi: 10.1016/j.nima.2004.01.055
  • Penning, F. M. (1928), Über den Einfluß sehr geringer Beimischungen auf die Zündspannung der Edelgase, Zeitschrift für Physik 46(5–6), 335–348. doi: 10.1007/BF01390558
  • Penning, F. M. (1934), The starting potential of the glow discharge in neon argon mixtures between large parallel plates: II. Discussion of the ionisation and excitation by electrons and metastable atoms, Physica 1(7–12), 1028–1044. doi: 10.1016/S0031-8914(34)80298-4
  • Ramsey, B. D. ve diğ. (1996), A large-area microstrip-gas-counter for X-ray astronomy, Nucl. Instrum. Meth. A 383(2–3), 424–430. doi: 10.1016/S0168-9002(96)00853-4
  • Rodionov, I. ve diğ. (2005), Advanced gaseous photodetectors for hyperspectroscopy and other applications, IEEE Nuclear Science Symposium Conference Record J04(2), 3045–3049. doi: 10.1109/NSSMIC.2005.1596972
  • Rubbia, A. (2004), Experiments For CP-Violation: A Giant Liquid Argon Scintillation, Cerenkov And Charge Imaging Experiment ?, arXiv: hep-ph/0402110, 1–31.
  • Rubbia, A. (2006), ArDM: a ton-scale liquid Argon experiment for direct detection of Dark Matter in the Universe, J. Phys. Conf. Ser. 39, 129–132. doi: 10.1088/1742-6596/39/1/028
  • Sauli, F. (1997), GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Meth. A 386(2–3), 531–534. doi: 10.1016/S0168-9002(96)01172-2
  • Sauli, F. (2014), Gaseous Radiation Detectors: Fundamentals and Applications, Cambridge University Press
  • Spindt, C. A., Brodie, I., Humphrey, L., Westerberg, E. R. (1976), Physical properties of thin‐film field emission cathodes with molybdenum cones, J. Appl. Phys. 47, 5248–5263. doi: 10.1063/1.322600
  • Veenhof, R. (1998), Garfield, recent developments, Nucl. Instrum. Meth. A 419(2–3), 726–730. doi: 10.1016/S0168-9002(98)00851-1
  • Walenta, A. H. (1979), The Time Expansion Chamber and Single Ionization Cluster Measurement, IEEE Trans. Nucl. Sci. 26(1), 73–80. doi: 10.1109/TNS.1979.4329616
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Özkan Şahin

Publication Date December 31, 2018
Submission Date May 5, 2018
Acceptance Date October 8, 2018
Published in Issue Year 2018 Volume: 23 Issue: 3

Cite

APA Şahin, Ö. (2018). GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 49-60. https://doi.org/10.17482/uumfd.421199
AMA Şahin Ö. GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ. UUJFE. December 2018;23(3):49-60. doi:10.17482/uumfd.421199
Chicago Şahin, Özkan. “GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 3 (December 2018): 49-60. https://doi.org/10.17482/uumfd.421199.
EndNote Şahin Ö (December 1, 2018) GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 49–60.
IEEE Ö. Şahin, “GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ”, UUJFE, vol. 23, no. 3, pp. 49–60, 2018, doi: 10.17482/uumfd.421199.
ISNAD Şahin, Özkan. “GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (December 2018), 49-60. https://doi.org/10.17482/uumfd.421199.
JAMA Şahin Ö. GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ. UUJFE. 2018;23:49–60.
MLA Şahin, Özkan. “GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 3, 2018, pp. 49-60, doi:10.17482/uumfd.421199.
Vancouver Şahin Ö. GAZLI PARÇACIK DETEKTÖRLERİNİN ÇALIŞMA VERİMİ VE KARARLILIĞININ İNCELENMESİ. UUJFE. 2018;23(3):49-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.