Research Article
BibTex RIS Cite

DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ

Year 2019, Volume: 24 Issue: 1, 277 - 288, 30.04.2019
https://doi.org/10.17482/uumfd.473432

Abstract

Metanollü yakıt hücreleri için yüksek sıralı ve
kaliteli TiO2 nano-tüpler (TiO2-NTs) katalizör desteği
olarak hazırlanmıştır. Sıralı TiO2-NTs hazırlandıktan sonra yüzeyine
küçük miktarlarda nikel (Ni) nanotanecikleri (TiO2-NTs-Ni)
elektrokimyasal olarak çöktürülmüştür. Bu şekilde hazırlanan anot
katalizörlerinin yüzey ve kristal yapısı sırasıyla taramalı elektron mikroskobu
(SEM), dönüşümlü voltametri (CV) ve X-ışını kırınımı (XRD) ile karakterize
edilmiştir. Hazırlanan TiO2-NTs-Ni anot katalizörlerinin metanol
oksidasyonu için katalitik aktiviteleri 1 M KOH içeren 1 M Metanol çözeltisinde
CV ve zamanla kararlılıkları ve dayanıklıkları kronoamperometri (CA) tekniği
ile araştırılmıştır. Elde edilen sonuçlara göre TiO2-NTs metanollü
ortamda aktivite göstermemiş bununla beraber yüzeyi az miktarda Ni ile
kaplanması metanol oksidasyonunu arttırmıştır. Katalizör yüzeyindeki Ni miktarı
arttıkça oksidasyon hızı artmaktadır. CV tarama hızı arttıkça oksidasyon pik akımlarında
artış gözlemlenmiştir. CA sonuçlarına göre hazırlanan katalizörler bir saat
boyunca çalışılan ortamda kararlı ve dayanıklı yapı sergilemiştir. Hazırlanan
TiO2-NTs-Ni metanollü yakıt hücreleri için etkin bir anot katalizörü
olarak kullanılabilir.      

References

  • 1. Singh, G. K. (2013) Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi:10.1016/j.energy.2013.02.057
  • 2. Lee, H., Hong, M., Bae, S., Lee, H., Park, E., Kim, K. (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes, Journal of Materials Chemistry, 13(10), 2626-2632. doi:10.1039/B303980C
  • 3. Ahmad, F., Sheha, E. (2013) Preparation and physical properties of (PVA) 0.7 (NaBr) 0.3 (H3PO4)xM solid acid membrane for phosphoric acid–Fuel cells, Journal of advanced research, 4(2), 155-161. doi:10.1016/j.jare.2012.05.001
  • 4. Pinar, F. J., Cañizares, P., Rodrigo, M. A., Ubeda, D., Lobato, J. (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells, Effect on titanium dioxide amount. RSC Advances, 2(4), 1547-1556. doi: 10.1039/C1RA01084K
  • 5. Chen, M., Lou, B., Ni, Z., Xu, B. (2015) PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 165, 105-109. doi:10.1016/j.electacta.2015.03.007
  • 6. Wasmus, S., Küver, A. (1999) Methanol oxidation and direct methanol fuel cells: a selective review1, Journal of Electroanalytical Chemistry, 461(1-2), 14-31. doi:10.1016/S0022-0728(98)00197-1
  • 7. Pu, L., Zhang, H., Yuan, T., Zou, Z., Zou, L., Li, X. M., Yang, H. (2015) High performance platinum nanorod assemblies based double-layered cathode for passive direct methanol fuel cells, Journal of Power Sources, 276, 95-101. doi:10.1016/j.jpowsour.2014.11.100
  • 8. Antolini, E., Lopes, T. R. V. P., Gonzalez, E. R. (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells, Journal of Alloys and Compounds, 461(1-2), 253-262. doi:10.1016/j.jallcom.2007.06.077
  • 9. Ferrin, P., Nilekar, A. U., Greeley, J., Mavrikakis, M., Rossmeisl, J. (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts, Surface Science, 602(21), 3424-3431. doi:10.1016/j.susc.2008.08.011
  • 10. Telli, E., Döner, A., Kardaş, G. (2013) Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochimica Acta, 107, 216-224. doi:10.1016/j.electacta.2013.05.113
  • 11. Solmaz, R. (2017) Gold‐supported activated NiZn coatings: hydrogen evolution and corrosion studies, International Journal of Energy Research, 41(10), 1452-1459. doi:10.1002/er.3724
  • 12. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., Mahjani, M. G. (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode, International Journal of Hydrogen Energy, 33(16), 4367-4376. doi:10.1016/j.ijhydene.2008.05.075
  • 13. Mao, Y. H., Chen, C. Y., Fu, J. X., Lai, T. Y., Lu, F. H., Tsai, Y. C. (2018) Electrodeposition of nickel copper on titanium nitride for methanol electrooxidation, Surface and Coatings Technology, 350, 949-953. doi:10.1016/j.surfcoat.2018.03.048
  • 14. Telli, E., Solmaz, R., Kardaş, G. (2011). Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium, Russian Journal of Electrochemistry, 47(7), 811-818. doi:10.1134/S1023193511070135
  • 15. Liang, R., Hu, A., Persic, J., Zhou, Y. N. (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation, Nano-Micro Letters, 5(3), 202-212. doi:10.1007/BF03353751
  • 16. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Watanabe, T. (1997) Light-induced amphiphilic surfaces, Nature, 388(6641), 431. doi:10.1038/41233
  • 17. Sun, T., Liu, E., Fan, J., Hu, X., Wu, F., Hou, W., Kang, L. (2013) High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chemical engineering journal, 228, 896-906. doi:10.1016/j.cej.2013.04.065
  • 18. Cheng, C., Ren, W., Zhang, H. (2014) 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting, Nano Energy, 5, 132-138. doi:10.1016/j.nanoen.2014.03.002
  • 19. Baran, E., Yazıcı, B. (2016) Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, International Journal of Hydrogen Energy, 41(4), 2498-2511. doi:10.1016/j.ijhydene.2015.12.028
  • 20. Radecka, M., Wnuk, A., Trenczek-Zajac, A., Schneider, K., Zakrzewska, K. (2015) TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting, International Journal of Hydrogen Energy, 40(1), 841-851. doi:10.1016/j.ijhydene.2014.09.154
  • 21. Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., Lisboa-Filho, P. N. (2018) Surface Physicochemical and Structural Analysis of Functionalized Titanium Dioxide Films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 168-178. doi:10.1016/j.colsurfa.2018.03.019
  • 22. Huang, J., Ding, L., Xi, Y., Shi, L., Su, G., Gao, R., Cao, L. (2018) Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity, Solid State Sciences, 80, 116-122. doi:10.1016/j.solidstatesciences.2018.03.011
  • 23. Şahin, E. A., Doğru, Mert, B., Toprak, Döşlü, S., Kardaş, G. Yazıcı, B. (2012) Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes, International Journal of Hydrogen Energy, 37, 4367-4376. doi:10.1016/j.ijhydene.2012.05.059
  • 24. Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y. R., Gedanken, A. (2001) Sonochemical synthesis of titania whiskers and nanotubes, Chemical communications, (24), 2616-2617. doi:10.1039/B108968B
  • 25. Baran, E., Yazıcı, B. (2015) Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I−/I3− electrolyte by electrochemical impedance spectroscopy, Applied Surface Science, 357, 2206–2216. http://dx.doi.org/10.1016/j.apsusc.2015.09.212
  • 26. Yasuda, K., Schmuki, P. (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52, 4053-4061. doi:10.1016/j.electacta.2006.11.023
  • 27. He, H., Xiao, P., Zhou, M., Zhang, Y., Lou, Q., Dong, X. (2012) Boosting catalytic activity with a p–n junction: Ni/TiO2 nanotube arrays composite catalyst for methanol oxidation, International Journal of Hydrogen Energy, 37(6), 4967-4973. doi:10.1016/j.ijhydene.2011.12.107
  • 28. Cheshideh, H., Nasirpouri, F. (2017) Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol, Journal of Electroanalytical Chemistry, 797, 121-133. doi:10.1016/j.jelechem.2017.05.024
  • 29. Wang, M., Guo, D. J., Li, H. L. (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry, 178(6), 1996-2000. doi:10.1016/j.jssc.2005.04.006
  • 30. Alemu, H., Jüttner, K. (1988) Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurements, Electrochimica Acta, 33, 1101-1109. https://doi:org/10.1016/0013-4686(88)80201-9
  • 31. Cao, H., Fan, Z., Hou, G., Tang, Y., Zheng, G. (2014) Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol, Electrochimica Acta, 125, 275–281. https://doi.org/10.1016/j.electacta.2014.01.101
Year 2019, Volume: 24 Issue: 1, 277 - 288, 30.04.2019
https://doi.org/10.17482/uumfd.473432

Abstract

References

  • 1. Singh, G. K. (2013) Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi:10.1016/j.energy.2013.02.057
  • 2. Lee, H., Hong, M., Bae, S., Lee, H., Park, E., Kim, K. (2003) A novel approach to preparing nano-size Co3O4-coated Ni powder by the Pechini method for MCFC cathodes, Journal of Materials Chemistry, 13(10), 2626-2632. doi:10.1039/B303980C
  • 3. Ahmad, F., Sheha, E. (2013) Preparation and physical properties of (PVA) 0.7 (NaBr) 0.3 (H3PO4)xM solid acid membrane for phosphoric acid–Fuel cells, Journal of advanced research, 4(2), 155-161. doi:10.1016/j.jare.2012.05.001
  • 4. Pinar, F. J., Cañizares, P., Rodrigo, M. A., Ubeda, D., Lobato, J. (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells, Effect on titanium dioxide amount. RSC Advances, 2(4), 1547-1556. doi: 10.1039/C1RA01084K
  • 5. Chen, M., Lou, B., Ni, Z., Xu, B. (2015) PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell, Electrochimica Acta, 165, 105-109. doi:10.1016/j.electacta.2015.03.007
  • 6. Wasmus, S., Küver, A. (1999) Methanol oxidation and direct methanol fuel cells: a selective review1, Journal of Electroanalytical Chemistry, 461(1-2), 14-31. doi:10.1016/S0022-0728(98)00197-1
  • 7. Pu, L., Zhang, H., Yuan, T., Zou, Z., Zou, L., Li, X. M., Yang, H. (2015) High performance platinum nanorod assemblies based double-layered cathode for passive direct methanol fuel cells, Journal of Power Sources, 276, 95-101. doi:10.1016/j.jpowsour.2014.11.100
  • 8. Antolini, E., Lopes, T. R. V. P., Gonzalez, E. R. (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells, Journal of Alloys and Compounds, 461(1-2), 253-262. doi:10.1016/j.jallcom.2007.06.077
  • 9. Ferrin, P., Nilekar, A. U., Greeley, J., Mavrikakis, M., Rossmeisl, J. (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts, Surface Science, 602(21), 3424-3431. doi:10.1016/j.susc.2008.08.011
  • 10. Telli, E., Döner, A., Kardaş, G. (2013) Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochimica Acta, 107, 216-224. doi:10.1016/j.electacta.2013.05.113
  • 11. Solmaz, R. (2017) Gold‐supported activated NiZn coatings: hydrogen evolution and corrosion studies, International Journal of Energy Research, 41(10), 1452-1459. doi:10.1002/er.3724
  • 12. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., Mahjani, M. G. (2008) Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode, International Journal of Hydrogen Energy, 33(16), 4367-4376. doi:10.1016/j.ijhydene.2008.05.075
  • 13. Mao, Y. H., Chen, C. Y., Fu, J. X., Lai, T. Y., Lu, F. H., Tsai, Y. C. (2018) Electrodeposition of nickel copper on titanium nitride for methanol electrooxidation, Surface and Coatings Technology, 350, 949-953. doi:10.1016/j.surfcoat.2018.03.048
  • 14. Telli, E., Solmaz, R., Kardaş, G. (2011). Electrocatalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium, Russian Journal of Electrochemistry, 47(7), 811-818. doi:10.1134/S1023193511070135
  • 15. Liang, R., Hu, A., Persic, J., Zhou, Y. N. (2013) Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation, Nano-Micro Letters, 5(3), 202-212. doi:10.1007/BF03353751
  • 16. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Watanabe, T. (1997) Light-induced amphiphilic surfaces, Nature, 388(6641), 431. doi:10.1038/41233
  • 17. Sun, T., Liu, E., Fan, J., Hu, X., Wu, F., Hou, W., Kang, L. (2013) High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method, Chemical engineering journal, 228, 896-906. doi:10.1016/j.cej.2013.04.065
  • 18. Cheng, C., Ren, W., Zhang, H. (2014) 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting, Nano Energy, 5, 132-138. doi:10.1016/j.nanoen.2014.03.002
  • 19. Baran, E., Yazıcı, B. (2016) Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, International Journal of Hydrogen Energy, 41(4), 2498-2511. doi:10.1016/j.ijhydene.2015.12.028
  • 20. Radecka, M., Wnuk, A., Trenczek-Zajac, A., Schneider, K., Zakrzewska, K. (2015) TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting, International Journal of Hydrogen Energy, 40(1), 841-851. doi:10.1016/j.ijhydene.2014.09.154
  • 21. Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., Lisboa-Filho, P. N. (2018) Surface Physicochemical and Structural Analysis of Functionalized Titanium Dioxide Films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 168-178. doi:10.1016/j.colsurfa.2018.03.019
  • 22. Huang, J., Ding, L., Xi, Y., Shi, L., Su, G., Gao, R., Cao, L. (2018) Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity, Solid State Sciences, 80, 116-122. doi:10.1016/j.solidstatesciences.2018.03.011
  • 23. Şahin, E. A., Doğru, Mert, B., Toprak, Döşlü, S., Kardaş, G. Yazıcı, B. (2012) Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes, International Journal of Hydrogen Energy, 37, 4367-4376. doi:10.1016/j.ijhydene.2012.05.059
  • 24. Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y. R., Gedanken, A. (2001) Sonochemical synthesis of titania whiskers and nanotubes, Chemical communications, (24), 2616-2617. doi:10.1039/B108968B
  • 25. Baran, E., Yazıcı, B. (2015) Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I−/I3− electrolyte by electrochemical impedance spectroscopy, Applied Surface Science, 357, 2206–2216. http://dx.doi.org/10.1016/j.apsusc.2015.09.212
  • 26. Yasuda, K., Schmuki, P. (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52, 4053-4061. doi:10.1016/j.electacta.2006.11.023
  • 27. He, H., Xiao, P., Zhou, M., Zhang, Y., Lou, Q., Dong, X. (2012) Boosting catalytic activity with a p–n junction: Ni/TiO2 nanotube arrays composite catalyst for methanol oxidation, International Journal of Hydrogen Energy, 37(6), 4967-4973. doi:10.1016/j.ijhydene.2011.12.107
  • 28. Cheshideh, H., Nasirpouri, F. (2017) Cyclic voltammetry deposition of nickel nanoparticles on TiO2 nanotubes and their enhanced properties for electro-oxidation of methanol, Journal of Electroanalytical Chemistry, 797, 121-133. doi:10.1016/j.jelechem.2017.05.024
  • 29. Wang, M., Guo, D. J., Li, H. L. (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation, Journal of Solid State Chemistry, 178(6), 1996-2000. doi:10.1016/j.jssc.2005.04.006
  • 30. Alemu, H., Jüttner, K. (1988) Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurements, Electrochimica Acta, 33, 1101-1109. https://doi:org/10.1016/0013-4686(88)80201-9
  • 31. Cao, H., Fan, Z., Hou, G., Tang, Y., Zheng, G. (2014) Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol, Electrochimica Acta, 125, 275–281. https://doi.org/10.1016/j.electacta.2014.01.101
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Asaf Tolga Ülgen

Ali Döner 0000-0002-3403-5370

Mehmet Haskul This is me

Publication Date April 30, 2019
Submission Date October 22, 2018
Acceptance Date March 26, 2019
Published in Issue Year 2019 Volume: 24 Issue: 1

Cite

APA Ülgen, A. T., Döner, A., & Haskul, M. (2019). DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 277-288. https://doi.org/10.17482/uumfd.473432
AMA Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. April 2019;24(1):277-288. doi:10.17482/uumfd.473432
Chicago Ülgen, Asaf Tolga, Ali Döner, and Mehmet Haskul. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 1 (April 2019): 277-88. https://doi.org/10.17482/uumfd.473432.
EndNote Ülgen AT, Döner A, Haskul M (April 1, 2019) DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 277–288.
IEEE A. T. Ülgen, A. Döner, and M. Haskul, “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”, UUJFE, vol. 24, no. 1, pp. 277–288, 2019, doi: 10.17482/uumfd.473432.
ISNAD Ülgen, Asaf Tolga et al. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (April 2019), 277-288. https://doi.org/10.17482/uumfd.473432.
JAMA Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. 2019;24:277–288.
MLA Ülgen, Asaf Tolga et al. “DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 1, 2019, pp. 277-88, doi:10.17482/uumfd.473432.
Vancouver Ülgen AT, Döner A, Haskul M. DOĞRUDAN METANOLLÜ YAKIT HÜCRELERİ İÇİN TiO2 DESTEKLİ ANOT GELİŞTİRİLMESİ. UUJFE. 2019;24(1):277-88.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.