Research Article
BibTex RIS Cite

Thermal and Mathematical Analysis of Aluminum Metal Melting in Solar Parabolic Dish System

Year 2019, Volume: 24 Issue: 2, 299 - 310, 30.08.2019
https://doi.org/10.17482/uumfd.429576

Abstract

In this study, melting of aluminum metal in a silicon
carbide pot was explored theoretically by utilizing solar rays concentrated
through a dish reflector. Based on the climatic conditions of Istanbul, İzmir,
Antalya and Mersin cities, calculations were made for 5 different dish and
receiver diameters and the potential amount of molten aluminum was determined.
The temperature change in the receiver depends on the condensation rate, direct
sunlight and receiver material properties. In this case, the amount of melting
aluminum was found to have an effect at very high rates. As the condensation
rate increases, the temperature in the pot (on the receiver) increases and the
aluminum smelting potential may increase even though the receiver size
decrease.

References

  • 1. Barreto, G., & Canhoto, P. (2017). Modelling of a Stirling engine with parabolic dish for thermal to electric conversion of solar energy. Energy Conversion and Management(132), 119-135. doi: 10.1016/j.enconman.2016.11.011
  • 2. Castellanos, L. S., Caballero, G. E., Cobas, V. R., Lora, E. E., & Reyes, A. M. (2017). Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation. Renewable Energy(107), 23-35. doi: 10.1016/j.renene.2017.01.020
  • 3. Duffie, J. A. (2013). Concentrating Collectors. D. J. A., & W. A. Beckman içinde, Solar Engineering of Thermal Processes (s. 322-373). Hoboken, New Jersey, Wiley.
  • 4. Goswami, Y. (2015). Solar Thermal Collectors. Y. Goswami içinde, Principles of Solar Engineering (s. 119-205). Boca Raton London New York, CRC Press.
  • 5. Hafez, A., Soliman, A., El-Metwally, K., & Ismail, I. (2016). Solar parabolic dish Stirling engine system design, simulation and thermal analysis. Energy Conversion and Management(126), 60-75. doi: 10.1016/j.enconman.2016.07.067
  • 6. Hijazi, H., Mokhiamar, O., & Elsamni, O. (2016). Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal(55), 1-11. doi: 10.1016/j.aej.2016.01.028
  • 7. Kadri, Y., & Abdallah, H. H. (2016). Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification. Energy Conversion and Management(129), 140-156. doi: 10.1016/j.enconman.2016.10.024
  • 8. Kalogirou, S. A. (2004). Solar thermal collectors and applications . Progress in Energy and Combustion Science(30), 231-295. doi: 10.1016/j.pecs.2004.02.001
  • 9. Kalogirou, S. A. (2009). Solar Thermal Power Systems. Solar Energy Engineering (s. 521-551) Academic Press.
  • 10. Kılıç, A., & Öztürk, A. (1983). Yeryüzüne Gelen Güneş Işınımı. İstanbul: Kipaş Dağıtımcılık.
  • 11. Lovegrove, K., & Stein, W. (2012). Parabolic dish concentrating solar power (CSP). Concentrating solar power technology (s. 284-321). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Limited.
  • 12. Reddy, K., Veershetty, G., & Vikram, T. S. (2016). Effect of wind speed and direction on convective heat losses from solar parabolic dish modified cavity receiver. Solar Energy(131), 183-198. doi: 10.1016/j.solener.2016.02.039
  • 13. Semprini, S., Sanchez, D., & Pascale, A. D. (2016). Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions. Solar Energy(132), 279-293. doi: 10.1016/j.solener.2016.03.012
  • 14. Tırıs, M., Tırıs, Ç., & Erdallı, Y. (1997). Güneş Enerjili Su Isıtma Sistemleri. Gebze-Kocaeli: TUBİTAK.
  • 15. Yıldız Uslu, N. (2009, Eylül). Silisyum-Pva ve Silisyum-Pvc Kompozit Tozlarının Pirolizi ve Karakterizasyonu. İstanbul: İTÜ-FBE.
  • 16. Yildiz Teknik Üniversitesi, (2008) Al ve Alaşımları. Erişim Adresi: http://www.yildiz.edu.tr/~akdogan/lessons/malzeme2/Aluminyum_ve_Aluminyum_Alasimlari.pdf (t.y.)
  • 17. Hatch, J.E. (1984). Aluminum Properties and Phsyıcal Metallurgy, ASM International, Ohio
  • 18. Çengel Y.A. (2012). Isı ve Kütle Transferi, Üçüncü Basım, Güven Bilimsel, İstanbul

GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ

Year 2019, Volume: 24 Issue: 2, 299 - 310, 30.08.2019
https://doi.org/10.17482/uumfd.429576

Abstract

Bu çalışmada çanak yansıtıcı vasıtasıyla
yoğunlaştırılmış güneş ışınlarından faydalanılarak silisyum karbür potada
alüminyum metalinin ergitilmesi teorik olarak incelenmiştir. 
İstanbul, İzmir, Antalya ve Mersin şehirlerinin
iklim koşulları temel alınarak 5 farklı çanak ve alıcı(pota) çapı için
hesaplamalar yapılmıştır ve potansiyel ergitilebilir alüminyum miktarı
belirlenmiştir. Alıcıdaki sıcaklık değişimi yoğunlaştırma oranına, direkt gelen
güneş ışınlarına ve alıcı malzeme özelliklerine bağlıdır. Bu durumun eritilecek
alüminyum miktarına çok yüksek oranlarda etkisi olduğu görülmüştür. Yapılan
hesaplamalar sonucunda yoğunlaştırma oranı arttıkça potadaki(alıcıdaki)
sıcaklık artmış, alıcı boyutu küçülmesine rağmen alüminyum ergitme
potansiyelinin artabileceği görülmüştür. 

References

  • 1. Barreto, G., & Canhoto, P. (2017). Modelling of a Stirling engine with parabolic dish for thermal to electric conversion of solar energy. Energy Conversion and Management(132), 119-135. doi: 10.1016/j.enconman.2016.11.011
  • 2. Castellanos, L. S., Caballero, G. E., Cobas, V. R., Lora, E. E., & Reyes, A. M. (2017). Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation. Renewable Energy(107), 23-35. doi: 10.1016/j.renene.2017.01.020
  • 3. Duffie, J. A. (2013). Concentrating Collectors. D. J. A., & W. A. Beckman içinde, Solar Engineering of Thermal Processes (s. 322-373). Hoboken, New Jersey, Wiley.
  • 4. Goswami, Y. (2015). Solar Thermal Collectors. Y. Goswami içinde, Principles of Solar Engineering (s. 119-205). Boca Raton London New York, CRC Press.
  • 5. Hafez, A., Soliman, A., El-Metwally, K., & Ismail, I. (2016). Solar parabolic dish Stirling engine system design, simulation and thermal analysis. Energy Conversion and Management(126), 60-75. doi: 10.1016/j.enconman.2016.07.067
  • 6. Hijazi, H., Mokhiamar, O., & Elsamni, O. (2016). Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal(55), 1-11. doi: 10.1016/j.aej.2016.01.028
  • 7. Kadri, Y., & Abdallah, H. H. (2016). Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification. Energy Conversion and Management(129), 140-156. doi: 10.1016/j.enconman.2016.10.024
  • 8. Kalogirou, S. A. (2004). Solar thermal collectors and applications . Progress in Energy and Combustion Science(30), 231-295. doi: 10.1016/j.pecs.2004.02.001
  • 9. Kalogirou, S. A. (2009). Solar Thermal Power Systems. Solar Energy Engineering (s. 521-551) Academic Press.
  • 10. Kılıç, A., & Öztürk, A. (1983). Yeryüzüne Gelen Güneş Işınımı. İstanbul: Kipaş Dağıtımcılık.
  • 11. Lovegrove, K., & Stein, W. (2012). Parabolic dish concentrating solar power (CSP). Concentrating solar power technology (s. 284-321). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Limited.
  • 12. Reddy, K., Veershetty, G., & Vikram, T. S. (2016). Effect of wind speed and direction on convective heat losses from solar parabolic dish modified cavity receiver. Solar Energy(131), 183-198. doi: 10.1016/j.solener.2016.02.039
  • 13. Semprini, S., Sanchez, D., & Pascale, A. D. (2016). Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions. Solar Energy(132), 279-293. doi: 10.1016/j.solener.2016.03.012
  • 14. Tırıs, M., Tırıs, Ç., & Erdallı, Y. (1997). Güneş Enerjili Su Isıtma Sistemleri. Gebze-Kocaeli: TUBİTAK.
  • 15. Yıldız Uslu, N. (2009, Eylül). Silisyum-Pva ve Silisyum-Pvc Kompozit Tozlarının Pirolizi ve Karakterizasyonu. İstanbul: İTÜ-FBE.
  • 16. Yildiz Teknik Üniversitesi, (2008) Al ve Alaşımları. Erişim Adresi: http://www.yildiz.edu.tr/~akdogan/lessons/malzeme2/Aluminyum_ve_Aluminyum_Alasimlari.pdf (t.y.)
  • 17. Hatch, J.E. (1984). Aluminum Properties and Phsyıcal Metallurgy, ASM International, Ohio
  • 18. Çengel Y.A. (2012). Isı ve Kütle Transferi, Üçüncü Basım, Güven Bilimsel, İstanbul
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Caner Coşkun

Deniz Ulusarslan This is me

Publication Date August 30, 2019
Submission Date June 1, 2018
Acceptance Date May 29, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Coşkun, C., & Ulusarslan, D. (2019). GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 299-310. https://doi.org/10.17482/uumfd.429576
AMA Coşkun C, Ulusarslan D. GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ. UUJFE. August 2019;24(2):299-310. doi:10.17482/uumfd.429576
Chicago Coşkun, Caner, and Deniz Ulusarslan. “GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 299-310. https://doi.org/10.17482/uumfd.429576.
EndNote Coşkun C, Ulusarslan D (August 1, 2019) GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 299–310.
IEEE C. Coşkun and D. Ulusarslan, “GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ”, UUJFE, vol. 24, no. 2, pp. 299–310, 2019, doi: 10.17482/uumfd.429576.
ISNAD Coşkun, Caner - Ulusarslan, Deniz. “GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 299-310. https://doi.org/10.17482/uumfd.429576.
JAMA Coşkun C, Ulusarslan D. GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ. UUJFE. 2019;24:299–310.
MLA Coşkun, Caner and Deniz Ulusarslan. “GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 299-10, doi:10.17482/uumfd.429576.
Vancouver Coşkun C, Ulusarslan D. GÜNEŞ ENERJİLİ PARABOLİK ÇANAK SİSTEMDE ALÜMİNYUM METALİNİN ERİTİLMESİNİN TERMAL VE MATEMATİKSEL ANALİZİ. UUJFE. 2019;24(2):299-310.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.