Research Article
BibTex RIS Cite

DOĞAL VE SENTETİK LİF ESASLI KOMPAKT İPLİKLERDEN ÜRETİLEN GÖMLEKLİK KUMAŞLARIN BAZI MEKANİK VE HAVA GEÇİRGENLİĞİ ÖZELLİKLERİNİN İNCELENMESİ

Year 2019, Volume: 24 Issue: 2, 445 - 460, 30.08.2019
https://doi.org/10.17482/uumfd.562414

Abstract

Gömleklik kumaşlar tekstil
tüketicileri açısından en çok talep edilen ürün gurupları arasındadır. Bu
ürünlerde hammadde olarak daha çok pamuk tercih edilse de, Poliester, elastan,
viskon gibi lifler ve bu liflerin pamuk ile karışımları da gömleklik kumaşlarda
kullanılabilmektedir. Gömleklik kumaşların konfeksiyon ürününde rahatlıkla
kullanılabilmeleri açısından dayanıklılıkları ve hava geçirgenliği özellikleri
göz önünde bulundurulmalıdır. Dokuma örgü konstrüksiyonu, çözgü ve atkı iplik
sıklığı, iplik numarası, lif tipi gibi kumaş konstrüksiyon parametreleri
gömleklik kumaşların mekanik ve hava geçirgenliği özelliklerini etkileyen temel
parametreler arasında yerini almaktadır.
Bu
çalışma farklı kumaş tiplerinin, gömleklik kumaşlara ait çözgü ve atkı
yönündeki yırtılma mukavemeti, dikiş mukavemeti, kat düzelme açısı (°) ve hava
geçirgenliği özelliklerine etkisini değerlendirmek üzere yapılmıştır. Bunun
için farklı oranlarda pamuk, keten, Poliamit, viskon ve elastan lifleri içeren
kompakt iplikler kullanılarak bezayağı, armürlü ve saten gömleklik kumaşlar
üretilmiştir. Ön terbiye işlemi yapılmış kumaşlara yırtılma mukavemeti testi,
dikiş mukavemeti testi, kat düzelme açısı (°) testi ve son olarak hava
geçirgenliği ölçüm testleri uygulanmıştır. Kumaş tipinin gömleklik kumaşların
bazı mekanik özellikleri ve hava geçirgenliği üzerindeki etkisinin 0.05
anlamlılık düzeyinde etkisini görebilmek adına tek yönlü ANOVA testi
uygulanmıştır. Test sonuçları istatiksel olarak değerlendirilmiş olup, kumaş tipinin
genel olarak gömleklik kumaşlara ait yırtılma mukavemeti, dikiş mukavemeti, kat
düzelme açısı ve hava geçirgenliği özellikleri üzerinde 0.05 anlamlılık
düzeyinde etkili olduğu görülmüştür.

References

  • 1. AATCC Test Method 66- Wrinkle Recovery of Woven Fabrics:Recovery Angle, 2017.
  • 2. Arık, B., Avinc, O., & Yavas, A. (2018). Crease resistance improvement of hemp biofibre fabric via sol–gel and crosslinking methods. Cellulose, 25(8),4841-4858. Doi: https://doi.org/10.1007/s10570-018-1885-1.
  • 3. Arık, B., İkiz, Y., Çalışkan, M., & Karaibrahimoğlu, K. (2018). Determination of tactile properties of shirt fabrics by sensory analysis and physical tests and evaluation of the relation between these two methods. Pamukkale University, Journal of Engineering Sciences, 24(7), 1262-1271. doi: 10.5505/pajes.2018.99422
  • 4. Arık, B., Sato, T., Sarikaya, G., & Ikiz, Y. (2016). Seasonal and emotional associations of the colours and their effects on directing the Turkish fashion. Color Research & Application, 41(5), 523-529. doi: https://doi.org/10.1002/col.21985
  • 5. ASTM D3776 / D3776M-09a, 2017), Standard Test Methods for Mass Per Unit Area (Weight) of Fabric, ASTM International, West Conshohocken, PA, 2017.
  • 6. BS EN 1049-2, Textiles-Woven fabrics-construction methods of analysis-Part 2 –Determination of number of threads for per unit length, 1998.
  • 7. Carty P, Byrne, M.S. (1991). The chemical and mechanical finishing of textile materials, 2nd edn. Newcastle upon Tyne Polytechnic Products Ltd, Newcastle
  • 8. Chen, Y., Collier, B., Hu, P., Quebedeaux, D. (2000). Objective evaluation of fabric softness. Textile Research Journal, 70(5), 443-448. Doi: https://doi.org/10.1177/004051750007000510
  • 9. Çoban, S., Cireli, A. (1992). Giysilik kumaşların tutum özelliklerinin objektif yöntemlerle belirlenmesi üzerine bir araştırma. Journal of Textile and Apparel/ Tekstil ve Konfeksiyon, 2(4), 294-302, 1992.
  • 10. Eltahan, E. (2018). Structural parameters affecting tear strength of the fabrics tents. Alexandria engineering journal, 57(1), 97-105.
  • 11. EN- ISO 9237 Determination of the permeability of fabrics to air, Geneva, Switzerland, 1995.
  • 12. Gürarda, A. (2008). Investigation of the seam performance of PET/nylon-elastane woven fabrics. Textile Research Journal, 78(1), 21-27. Doi: 10.1177/0040517507082636.
  • 13. Havlová, M. (2013). Air Permeability and Costructional Parameters of Woven Fabrics. FIBRES & TEXTILES in Eastern Europe, 21(2), 98.
  • 14. Hu, J. ed. (2004) Structure and mechanics of woven fabrics, Woodhead Publishing Limited, UK.
  • 15. Hu, J. ed. (2008) Fabric testing, Woodhead Publishing Limited, UK.
  • 16. ISO 13935-1, 2004 Textiles -- Seam tensile properties of fabrics and made-up textile articles -- Part 1: Determination of maximum force to seam rupture using the strip method.
  • 17. Krook, CM., Fox KR. (1945). Study of the tongue–tear test. Textile Research Journal, 15:389–96. Doi: https://doi.org/10.1177/004051754501501102.
  • 18. Mohamad, G.A. (2015). Comparative Study of Air Permeability of Polyester/Metallic Blended Woven Fabrics. Life Science Journal, 12(6), 78-82.
  • 19. Mukhopadhyay, A., Ghosh, S., & Bhaumik, S. (2006). Tearing and tensile strength behaviour of military khaki fabrics from grey to finished process. International journal of clothing Science and technology, 18(4), 247-264.doi : https://doi.org/10.1108/09556220610668482
  • 20. Namiranian, R., Shaikhzadeh Najar, S., Etrati, S. M., & Manich, A.M. (2014). Seam slippage and seam strength behavior of elastic woven fabrics under static loading. Indian Journal of Fibre & Textile Research (IJFTR), 39(3), 221-229.
  • 21. Nassif, G.A.A. (2012). Effect of weave structure and weft density on the physical and mechanical properties of micro polyester woven fabrics. Life Science Journal, 9(3), 1326-1331.
  • 22. Oğulata, R. T., & Kadem, F. D. (2008). Prediction of regression analyses of fabric tensile strength of 100% cotton fabrıcs with yarn dyed in different constructions, Journal of Textile & Apparel / Tekstil ve Konfeksiyon, Vol. 18 Issue 3, p185-190. 6p.
  • 23. Omeroglu, S., Karaca, E., & Becerir, B. (2010). Comparison of bending, drapability and crease recovery behaviors of woven fabrics produced from polyester fibres having different cross-sectional shapes. Textile Research Journal, 80(12), 1180-1190. Doi: https://doi.org/10.1177/0040517509355351
  • 24. Sarıoğlu, E., & Babaarslan, O. (2019). Porosity and air permeability relationship of denim fabrics produced using core-spun yarns with different filament finenesses for filling. Journal of Engineered Fibres and Fabrics, vol 14, p 1-8. doi: 10.1177/1558925019837810
  • 25. Scelzo, W.A., Barker, S. and Boyce, M.C. (1994). Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth, Part I: understanding tongue tear. J. Textile Institue., Vol. 65, pp. 291-304. Doi: https://doi.org/10.1177/004051759406400506
  • 26. Sudnik, Z. M. (1966). Effect of weave and constructıon on dry wrınklıng of woven nylon 6.6 Shirting fabrics. Journal of the Textile Institute Transactions, 57(4), T148-T156.
  • 27. Teixeira, N.A, Platt, M.M., Hamburger, W.J. (1955). Mechanics of elastic performance of textile materials: part XII: Relation of certain geometric factors to the tear strength of woven fabrics. Text Res J, 25 (10), pp 838–861. doi. https://doi.org/10.1177/004051755502501003
  • 28. Ukponmwan, J. O. (1987). Appraisal of woven fabric performance. Textile Research Journal, 57(8), 445-462. doi: https://doi.org/10.1177/004051758705700803
  • 29. Wang, X.,Yao, M. (2000). Grading the crease recovery with twisting of fabric by using image identification technique. International Journal of Clothing Science and Technology, 12(2), 114-123.
  • 30. Yick, K.L., Cheng, K. P. S., Dhingra, R. C., & How, Y. L. (1996). Comparison of mechanical properties of shirting materials measured on the KES-F and FAST instruments. Textile Research journal, 66(10), 622-633. Doi: https://doi.org/10.1177/004051759606601003

INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES

Year 2019, Volume: 24 Issue: 2, 445 - 460, 30.08.2019
https://doi.org/10.17482/uumfd.562414

Abstract

Shirting fabrics are one of the most demanded product
groups for textile consumers. Although cotton is the most preferred fibre as
the raw material of shirting fabrics, fibres such as Polyester, Elastane, viscose
and their blends with cotton may also be utilized in the shirting fabrics. For
the convenience usage of shirting fabrics in apparel products, those fabrics’
durability and air permeability properties should be considered in detail. Fabric
constructional parameters such as weave structure, warp and weft yarn density,
yarn count, fibre type are the main influential factors on shirting fabrics’
mechanical and air permeability properties. This study has been performed in
order to evaluate the effect of fabric construction on some mechanical
properties such as tear strength, seam strength, crease recovery angle (°) as
well as on air permeability of the shirting fabrics.  Throughout
the
study,
plain, dobby and
satin shirting woven fabrics were produced from the compact yarns with several
combinations of cotton, linen, polyamide, viscose and elastane fibre blends.
Pre-treated samples were objected to tear strength test, seam strength test,
crease recovery angle (°) test and finally to air permeability test. Randomized
One –Way ANOVA test was performed in order to investigate the significant
effect of fabric type on some mechanical and air permeability properties of
shirting fabrics at significance level of 0.05. Test results were statistically
evaluated and it was generally observed that there was a significant effect of
fabric type on tear strength, seam strength, crease recovery angle and on air
permeability features of the shirting fabrics at significant level of 0.05. 

References

  • 1. AATCC Test Method 66- Wrinkle Recovery of Woven Fabrics:Recovery Angle, 2017.
  • 2. Arık, B., Avinc, O., & Yavas, A. (2018). Crease resistance improvement of hemp biofibre fabric via sol–gel and crosslinking methods. Cellulose, 25(8),4841-4858. Doi: https://doi.org/10.1007/s10570-018-1885-1.
  • 3. Arık, B., İkiz, Y., Çalışkan, M., & Karaibrahimoğlu, K. (2018). Determination of tactile properties of shirt fabrics by sensory analysis and physical tests and evaluation of the relation between these two methods. Pamukkale University, Journal of Engineering Sciences, 24(7), 1262-1271. doi: 10.5505/pajes.2018.99422
  • 4. Arık, B., Sato, T., Sarikaya, G., & Ikiz, Y. (2016). Seasonal and emotional associations of the colours and their effects on directing the Turkish fashion. Color Research & Application, 41(5), 523-529. doi: https://doi.org/10.1002/col.21985
  • 5. ASTM D3776 / D3776M-09a, 2017), Standard Test Methods for Mass Per Unit Area (Weight) of Fabric, ASTM International, West Conshohocken, PA, 2017.
  • 6. BS EN 1049-2, Textiles-Woven fabrics-construction methods of analysis-Part 2 –Determination of number of threads for per unit length, 1998.
  • 7. Carty P, Byrne, M.S. (1991). The chemical and mechanical finishing of textile materials, 2nd edn. Newcastle upon Tyne Polytechnic Products Ltd, Newcastle
  • 8. Chen, Y., Collier, B., Hu, P., Quebedeaux, D. (2000). Objective evaluation of fabric softness. Textile Research Journal, 70(5), 443-448. Doi: https://doi.org/10.1177/004051750007000510
  • 9. Çoban, S., Cireli, A. (1992). Giysilik kumaşların tutum özelliklerinin objektif yöntemlerle belirlenmesi üzerine bir araştırma. Journal of Textile and Apparel/ Tekstil ve Konfeksiyon, 2(4), 294-302, 1992.
  • 10. Eltahan, E. (2018). Structural parameters affecting tear strength of the fabrics tents. Alexandria engineering journal, 57(1), 97-105.
  • 11. EN- ISO 9237 Determination of the permeability of fabrics to air, Geneva, Switzerland, 1995.
  • 12. Gürarda, A. (2008). Investigation of the seam performance of PET/nylon-elastane woven fabrics. Textile Research Journal, 78(1), 21-27. Doi: 10.1177/0040517507082636.
  • 13. Havlová, M. (2013). Air Permeability and Costructional Parameters of Woven Fabrics. FIBRES & TEXTILES in Eastern Europe, 21(2), 98.
  • 14. Hu, J. ed. (2004) Structure and mechanics of woven fabrics, Woodhead Publishing Limited, UK.
  • 15. Hu, J. ed. (2008) Fabric testing, Woodhead Publishing Limited, UK.
  • 16. ISO 13935-1, 2004 Textiles -- Seam tensile properties of fabrics and made-up textile articles -- Part 1: Determination of maximum force to seam rupture using the strip method.
  • 17. Krook, CM., Fox KR. (1945). Study of the tongue–tear test. Textile Research Journal, 15:389–96. Doi: https://doi.org/10.1177/004051754501501102.
  • 18. Mohamad, G.A. (2015). Comparative Study of Air Permeability of Polyester/Metallic Blended Woven Fabrics. Life Science Journal, 12(6), 78-82.
  • 19. Mukhopadhyay, A., Ghosh, S., & Bhaumik, S. (2006). Tearing and tensile strength behaviour of military khaki fabrics from grey to finished process. International journal of clothing Science and technology, 18(4), 247-264.doi : https://doi.org/10.1108/09556220610668482
  • 20. Namiranian, R., Shaikhzadeh Najar, S., Etrati, S. M., & Manich, A.M. (2014). Seam slippage and seam strength behavior of elastic woven fabrics under static loading. Indian Journal of Fibre & Textile Research (IJFTR), 39(3), 221-229.
  • 21. Nassif, G.A.A. (2012). Effect of weave structure and weft density on the physical and mechanical properties of micro polyester woven fabrics. Life Science Journal, 9(3), 1326-1331.
  • 22. Oğulata, R. T., & Kadem, F. D. (2008). Prediction of regression analyses of fabric tensile strength of 100% cotton fabrıcs with yarn dyed in different constructions, Journal of Textile & Apparel / Tekstil ve Konfeksiyon, Vol. 18 Issue 3, p185-190. 6p.
  • 23. Omeroglu, S., Karaca, E., & Becerir, B. (2010). Comparison of bending, drapability and crease recovery behaviors of woven fabrics produced from polyester fibres having different cross-sectional shapes. Textile Research Journal, 80(12), 1180-1190. Doi: https://doi.org/10.1177/0040517509355351
  • 24. Sarıoğlu, E., & Babaarslan, O. (2019). Porosity and air permeability relationship of denim fabrics produced using core-spun yarns with different filament finenesses for filling. Journal of Engineered Fibres and Fabrics, vol 14, p 1-8. doi: 10.1177/1558925019837810
  • 25. Scelzo, W.A., Barker, S. and Boyce, M.C. (1994). Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth, Part I: understanding tongue tear. J. Textile Institue., Vol. 65, pp. 291-304. Doi: https://doi.org/10.1177/004051759406400506
  • 26. Sudnik, Z. M. (1966). Effect of weave and constructıon on dry wrınklıng of woven nylon 6.6 Shirting fabrics. Journal of the Textile Institute Transactions, 57(4), T148-T156.
  • 27. Teixeira, N.A, Platt, M.M., Hamburger, W.J. (1955). Mechanics of elastic performance of textile materials: part XII: Relation of certain geometric factors to the tear strength of woven fabrics. Text Res J, 25 (10), pp 838–861. doi. https://doi.org/10.1177/004051755502501003
  • 28. Ukponmwan, J. O. (1987). Appraisal of woven fabric performance. Textile Research Journal, 57(8), 445-462. doi: https://doi.org/10.1177/004051758705700803
  • 29. Wang, X.,Yao, M. (2000). Grading the crease recovery with twisting of fabric by using image identification technique. International Journal of Clothing Science and Technology, 12(2), 114-123.
  • 30. Yick, K.L., Cheng, K. P. S., Dhingra, R. C., & How, Y. L. (1996). Comparison of mechanical properties of shirting materials measured on the KES-F and FAST instruments. Textile Research journal, 66(10), 622-633. Doi: https://doi.org/10.1177/004051759606601003
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Erhan Kenan Çeven

Gizem Karakan Günaydın

Publication Date August 30, 2019
Submission Date May 9, 2019
Acceptance Date July 10, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Çeven, E. K., & Karakan Günaydın, G. (2019). INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 445-460. https://doi.org/10.17482/uumfd.562414
AMA Çeven EK, Karakan Günaydın G. INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES. UUJFE. August 2019;24(2):445-460. doi:10.17482/uumfd.562414
Chicago Çeven, Erhan Kenan, and Gizem Karakan Günaydın. “INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 445-60. https://doi.org/10.17482/uumfd.562414.
EndNote Çeven EK, Karakan Günaydın G (August 1, 2019) INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 445–460.
IEEE E. K. Çeven and G. Karakan Günaydın, “INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES”, UUJFE, vol. 24, no. 2, pp. 445–460, 2019, doi: 10.17482/uumfd.562414.
ISNAD Çeven, Erhan Kenan - Karakan Günaydın, Gizem. “INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 445-460. https://doi.org/10.17482/uumfd.562414.
JAMA Çeven EK, Karakan Günaydın G. INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES. UUJFE. 2019;24:445–460.
MLA Çeven, Erhan Kenan and Gizem Karakan Günaydın. “INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 445-60, doi:10.17482/uumfd.562414.
Vancouver Çeven EK, Karakan Günaydın G. INVESTIGATION OF SOME MECHANICAL AND AIR PERMEABILITY PROPERTIES OF SHIRTING FABRICS PRODUCED FROM COMPACT YARNS MADE OF NATURAL AND SYNTHETIC FIBRES. UUJFE. 2019;24(2):445-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.