Research Article
BibTex RIS Cite

Structural, magnetic and magnetic fluid hyperthermia application of La0.7Ca0.1K0.2MnO3

Year 2019, Volume: 24 Issue: 3, 153 - 162, 31.12.2019
https://doi.org/10.17482/uumfd.417524

Abstract

La0.7Ca0.1K0.2MnO3 nanoparticles were synthesized by sol-gel method. The structural, magnetic
and magneto-thermal properties of the compound were investigated in detail. Structural property was
performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the XRD pattern,
Rietveld analysis was used by the FullProf program. At the end of the analysis, it was observed that the
crystal lattice of the compound has an orthorhombic structure and that La2O3, Mn3O4 and MnO2
impurities were found. SEM analysis showed that the nanoparticles have a near- spherical geometry and
the impurities have a hexagonal and cube-shaped in some regions. As a result of the magnetic analysis, it
was observed that the compound occurred the ferromagnetic-partly paramagnetic phase transition at room
temperature. The saturation magnetization of the ferromagnetic part was 1.9 Am2
/kg and the coercivity of
the compound was determined to be 12 mT. The specific absorption rate (SAR) value of the compound
from the magneto- thermal measurements was calculated to be 11.5 W/g.

References

  • Ansari, L., Malaekeh-Nikouei, B. (2017) Magnetic silica nanocomposites for magnetic hyperthermia applications, International Journal of Hyperthermia, 33(3), 354-363. doi:10.1080/02656736.2016.1243736
  • Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M. A., Hernando, A., de la Presa, P. (2016) Improving the magnetic heating by disaggregating nanoparticles, Journal of Alloys and Compounds, 663(Supplement C), 636-644. doi:10.1016/j.jallcom.2015.10.285
  • Bornstein, B. A., Zouranjian, P. S., Hansen, J. L., Fraser, S. M., Gelwan, L. A., Teicher, B. A., Svensson, G. K. (1993) Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma, International Journal of Radiation Oncology*Biology*Physics, 25(1), 79-85. doi:10.1016/0360-3016(93)90148-O
  • Cristofolini, L., Szczepanowicz, K., Orsi, D., Rimoldi, T., Albertini, F., Warszynski, P. (2016) Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications, Acs Applied Materials & Interfaces, 8(38), 25043-25050. doi:10.1021/acsami.6b05917
  • Cullity, B. D. 1972 Introduction to Magnetic Materials: Addison-Wesley Publishing Company.
  • Epherre, R., Duguet, E., Mornet, S., Pollert, E., Louguet, S., Lecommandoux, S., Schatz, C., Goglio, G. (2011) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route, Journal of Materials Chemistry, 21(12), 4393-4401. doi:10.1039/c0jm03963b
  • Falk, M. H., Issels, R. D. (2001) Hyperthermia in oncology, International Journal of Hyperthermia, 17(1), 1-18. doi:10.1080/02656730150201552
  • Gorbenko, O. Y., Markelova, M. N., Mel’nikov, O. V., Kaul, A. R., Atsarkin, V. A., Demidov, V. V., Mefed, A. E., Roy, E. J., Odintsov, B. M. (2009) Synthesis, composition, and properties of the solid solutions La1−x AgyMnO3+δ, promising materials for cell hyperthermia, Doklady Chemistry, 424(1), 7-10. doi:10.1134/s0012500809010029
  • Guibert, C., Fresnais, J., Peyre, V., Dupuis, V. (2017) Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements, Journal of Magnetism and Magnetic Materials, 421, 384-392. doi:10.1016/j.jmmm.2016.08.015
  • Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18), 3995-4021. doi:10.1016/j.biomaterials.2004.10.012
  • Haase, C., Nowak, U. (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles, Physical Review B, 85(4), 045435 doi:10.1103/PhysRevB.85.045435.
  • Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., Kaiser, W. A. (2002) Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study, Invest. Radiol., 37, 580–586. doi:10.1097/00004424-200210000-00008
  • Hilger, I., Kiessling, A., Romanus, E., Hiergeist, R., Rudolf, H. T., Andra, W., Roskos, M., Linss, W., Weber, P., Weitschies, W., Kaiser, W. A. (2004) Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation, Nanotechnology, 15(8), 1027-1032. doi:10.1088/0957-4484/15/8/029
  • Hoang Nam, N., Huong, D. T. M., Luong, N. H. (2014) Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles, Ieee Transactions on Magnetics, 50(6), 1-4. doi:10.1109/tmag.2014.2307834
  • http://www.acarchemicals.com/ (Son erişim tarihi: 12.09.2019) Acar chemicals, A. C.
  • Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., Felix, R. (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 225(1-2), 118-126. doi:10.1016/S0304-8853(00)01239-7
  • Kaman, O., Pollert, E., Veverka, P., Veverka, M., Hadova, E., Knizek, K., Marysko, M., Kaspar, P., Klementova, M., Grunwaldova, V., Vasseur, S., Epherre, R., Mornet, S., Goglio, G., Duguet, E. (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating, Nanotechnology, 20(27), 275610. doi:10.1088/0957-4484/20/27/275610
  • Kumar, C. S., Mohammad, F. (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, 63(9), 789-808. doi:10.1016/j.addr.2011.03.008
  • Kumar, S., Daverey, A., Khalilzad-Sharghi, V., Sahu, N. K., Kidambi, S., Othman, S. F., Bahadur, D. (2015) Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia, Rsc Advances, 5(66), 53180-53188. doi:10.1039/c5ra07632c
  • Mori, T., Inoue, K., Kamegashira, N. (2000) Phase behavior in the system LaxSr1−xMnO(5+x)/2 (x=0.8–1.0) with trivalent state of manganese ion, Journal of Alloys and Compounds, 308(1-2), 87-93. doi:10.1016/s0925-8388(00)00900-2
  • Natividad, E., Castro, M., Goglio, G., Andreu, I., Epherre, R., Duguet, E., Mediano, A. (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale, 4(13), 3954-3962. doi:10.1039/c2nr30667k
  • Patterson, A. L. (1939) The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56(10), 978-982. doi:10.1103/PhysRev.56.978
  • Pollert, E., Knizek, K., Marysko, M., Kaspar, P., Vasseur, S., Duguet, E. (2007) New T-ctuned magnetic nanoparticles for self-controlled hyperthermia, Journal of Magnetism and Magnetic Materials, 316(2), 122-125. doi:10.1016/j.jmmm.2007.02.031
  • Uskoković, V., Košak, A., Drofenik, M. (2006) Silica-coated lanthanum–strontium manganites for hyperthermia treatments, Materials Letters, 60(21-22), 2620-2622. doi:10.1016/j.matlet.2006.01.047
  • Vasseur, S., Duguet, E., Portier, J., Goglio, G., Mornet, S., Hadova, E., Knizek, K., Marysko, M., Veverka, P., Pollert, E. (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 307(2), 330-330. doi:10.1016/j.jmmm.2006.06.034

La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI

Year 2019, Volume: 24 Issue: 3, 153 - 162, 31.12.2019
https://doi.org/10.17482/uumfd.417524

Abstract

La0.7Ca0.1K0.2MnO3 nanoparçacıklar sol-gel yöntemiyle sentezlendi. Bileşiğin yapısal, manyetik ve
manyeto-termal özellikleri detaylı bir biçimde incelendi. Yapısal özellikleri X-ışını kırınımı (XRD) ve
taramalı elektron mikroskobu (SEM) ile gerçekleştirildi. XRD deseninde FullProf programı yardımıyla
Rietveld analizi gerçekleştirildi. Analiz sonucunda bileşiğin kristal örgüsünün ortorombik yapıya sahip
olduğu ve içerisinde La2O3, Mn3O4 ve MnO2 safsızlıklarının bulunduğu gözlendi. SEM analiziyle
nanoparçacıkların küresele yakın bir geometriye sahip olduğu ve safsızlıkların altıgen ve küp şeklinde
belirli bölgelerde oluştuğu görüldü. Manyetik analizlerin sonucunda bileşiğin oda sıcaklığında
ferromanyetik kısmen paramanyetik duruma geçtiği görüldü. Ferromanyetik faza ait doyum
mıknatıslanması 1,9 Am2
/kg ve bileşiğin koarsivite değeri 12 mT olduğu belirlendi. Manyeto-termal
ölçümler sonucunda bileşiğin spesifik soğurma oranı (SAR) değeri 11,5 W/g olarak hesaplandı.

References

  • Ansari, L., Malaekeh-Nikouei, B. (2017) Magnetic silica nanocomposites for magnetic hyperthermia applications, International Journal of Hyperthermia, 33(3), 354-363. doi:10.1080/02656736.2016.1243736
  • Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M. A., Hernando, A., de la Presa, P. (2016) Improving the magnetic heating by disaggregating nanoparticles, Journal of Alloys and Compounds, 663(Supplement C), 636-644. doi:10.1016/j.jallcom.2015.10.285
  • Bornstein, B. A., Zouranjian, P. S., Hansen, J. L., Fraser, S. M., Gelwan, L. A., Teicher, B. A., Svensson, G. K. (1993) Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma, International Journal of Radiation Oncology*Biology*Physics, 25(1), 79-85. doi:10.1016/0360-3016(93)90148-O
  • Cristofolini, L., Szczepanowicz, K., Orsi, D., Rimoldi, T., Albertini, F., Warszynski, P. (2016) Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications, Acs Applied Materials & Interfaces, 8(38), 25043-25050. doi:10.1021/acsami.6b05917
  • Cullity, B. D. 1972 Introduction to Magnetic Materials: Addison-Wesley Publishing Company.
  • Epherre, R., Duguet, E., Mornet, S., Pollert, E., Louguet, S., Lecommandoux, S., Schatz, C., Goglio, G. (2011) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route, Journal of Materials Chemistry, 21(12), 4393-4401. doi:10.1039/c0jm03963b
  • Falk, M. H., Issels, R. D. (2001) Hyperthermia in oncology, International Journal of Hyperthermia, 17(1), 1-18. doi:10.1080/02656730150201552
  • Gorbenko, O. Y., Markelova, M. N., Mel’nikov, O. V., Kaul, A. R., Atsarkin, V. A., Demidov, V. V., Mefed, A. E., Roy, E. J., Odintsov, B. M. (2009) Synthesis, composition, and properties of the solid solutions La1−x AgyMnO3+δ, promising materials for cell hyperthermia, Doklady Chemistry, 424(1), 7-10. doi:10.1134/s0012500809010029
  • Guibert, C., Fresnais, J., Peyre, V., Dupuis, V. (2017) Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements, Journal of Magnetism and Magnetic Materials, 421, 384-392. doi:10.1016/j.jmmm.2016.08.015
  • Gupta, A. K., Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18), 3995-4021. doi:10.1016/j.biomaterials.2004.10.012
  • Haase, C., Nowak, U. (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles, Physical Review B, 85(4), 045435 doi:10.1103/PhysRevB.85.045435.
  • Hilger, I., Hiergeist, R., Hergt, R., Winnefeld, K., Schubert, H., Kaiser, W. A. (2002) Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study, Invest. Radiol., 37, 580–586. doi:10.1097/00004424-200210000-00008
  • Hilger, I., Kiessling, A., Romanus, E., Hiergeist, R., Rudolf, H. T., Andra, W., Roskos, M., Linss, W., Weber, P., Weitschies, W., Kaiser, W. A. (2004) Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation, Nanotechnology, 15(8), 1027-1032. doi:10.1088/0957-4484/15/8/029
  • Hoang Nam, N., Huong, D. T. M., Luong, N. H. (2014) Synthesis and Magnetic Properties of Perovskite La1-xSrxMnO3 Nanoparticles, Ieee Transactions on Magnetics, 50(6), 1-4. doi:10.1109/tmag.2014.2307834
  • http://www.acarchemicals.com/ (Son erişim tarihi: 12.09.2019) Acar chemicals, A. C.
  • Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., Schirra, H., Schmidt, H., Deger, S., Loening, S., Lanksch, W., Felix, R. (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 225(1-2), 118-126. doi:10.1016/S0304-8853(00)01239-7
  • Kaman, O., Pollert, E., Veverka, P., Veverka, M., Hadova, E., Knizek, K., Marysko, M., Kaspar, P., Klementova, M., Grunwaldova, V., Vasseur, S., Epherre, R., Mornet, S., Goglio, G., Duguet, E. (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating, Nanotechnology, 20(27), 275610. doi:10.1088/0957-4484/20/27/275610
  • Kumar, C. S., Mohammad, F. (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, 63(9), 789-808. doi:10.1016/j.addr.2011.03.008
  • Kumar, S., Daverey, A., Khalilzad-Sharghi, V., Sahu, N. K., Kidambi, S., Othman, S. F., Bahadur, D. (2015) Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia, Rsc Advances, 5(66), 53180-53188. doi:10.1039/c5ra07632c
  • Mori, T., Inoue, K., Kamegashira, N. (2000) Phase behavior in the system LaxSr1−xMnO(5+x)/2 (x=0.8–1.0) with trivalent state of manganese ion, Journal of Alloys and Compounds, 308(1-2), 87-93. doi:10.1016/s0925-8388(00)00900-2
  • Natividad, E., Castro, M., Goglio, G., Andreu, I., Epherre, R., Duguet, E., Mediano, A. (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale, 4(13), 3954-3962. doi:10.1039/c2nr30667k
  • Patterson, A. L. (1939) The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56(10), 978-982. doi:10.1103/PhysRev.56.978
  • Pollert, E., Knizek, K., Marysko, M., Kaspar, P., Vasseur, S., Duguet, E. (2007) New T-ctuned magnetic nanoparticles for self-controlled hyperthermia, Journal of Magnetism and Magnetic Materials, 316(2), 122-125. doi:10.1016/j.jmmm.2007.02.031
  • Uskoković, V., Košak, A., Drofenik, M. (2006) Silica-coated lanthanum–strontium manganites for hyperthermia treatments, Materials Letters, 60(21-22), 2620-2622. doi:10.1016/j.matlet.2006.01.047
  • Vasseur, S., Duguet, E., Portier, J., Goglio, G., Mornet, S., Hadova, E., Knizek, K., Marysko, M., Veverka, P., Pollert, E. (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 307(2), 330-330. doi:10.1016/j.jmmm.2006.06.034
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Atakan Tekgül 0000-0001-6737-3838

Publication Date December 31, 2019
Submission Date April 20, 2018
Acceptance Date September 27, 2019
Published in Issue Year 2019 Volume: 24 Issue: 3

Cite

APA Tekgül, A. (2019). La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 153-162. https://doi.org/10.17482/uumfd.417524
AMA Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. December 2019;24(3):153-162. doi:10.17482/uumfd.417524
Chicago Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 3 (December 2019): 153-62. https://doi.org/10.17482/uumfd.417524.
EndNote Tekgül A (December 1, 2019) La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 3 153–162.
IEEE A. Tekgül, “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”, UUJFE, vol. 24, no. 3, pp. 153–162, 2019, doi: 10.17482/uumfd.417524.
ISNAD Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/3 (December 2019), 153-162. https://doi.org/10.17482/uumfd.417524.
JAMA Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. 2019;24:153–162.
MLA Tekgül, Atakan. “La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 3, 2019, pp. 153-62, doi:10.17482/uumfd.417524.
Vancouver Tekgül A. La0.7Ca0.1K0.2MnO3 BİLEŞİĞİNİN MANYETİK AKIŞKAN HİPERTERMİ UYGULAMASI. UUJFE. 2019;24(3):153-62.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.