Araştırma Makalesi
BibTex RIS Kaynak Göster

STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY

Yıl 2020, Cilt: 25 Sayı: 1, 169 - 186, 30.04.2020
https://doi.org/10.17482/uumfd.468870

Öz

In this study, the effects of different mold types and quenching mediums with different internal stresses on the mechanical properties of ETIAL 221 alloy supplied as a primer were investigated, and analyzed statistically. Firstly, the alloy was poured into the permanent mold (PM) then poured into sand mold with grain size 40/45 and 60/65 AFS. The specimens were subjected to three different T6 heat treatment quenching mediums that are water at room temperature (WRT), oil (OL) and boiling water (BW). The influences of differences in solidification rate due to cooling rates and differences in internal stress due to quenching mediums on mechanical properties were investigated. Additionally, the change in porosity was calculated according to Archimedes principle and obtained results were related to the mechanical properties. The results showed that permanent mold and boiling water quenching medium presented the best mechanical properties for the current study.

Kaynakça

  • 1. Ammar, H.R., Moreau, C., Samuel, A.M., Samuel, F.H., Doty, H.W. (2008). Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Materials Science and Engineering: A, 489(1), 426-438. doi:https://doi.org/10.1016/j.msea.2007.12.032
  • 2. Beitz, H. (1998). Non-combustible water-based quenchants in forging shops for automotive parts--latest development. 1 st International Automotive Heat Treating Conference, 106-109.
  • 3. Caceres, C., Davidson, C., Griffiths, J., Newton, C. (2002). Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering: A, 325(1-2), 344-355. doi:https://doi.org/10.1016/S0921-5093(01)01467-8
  • 4. Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design: Butterworth-Heinemann. 978-0-444-63509-9:978-0-444-63509-9
  • 5. Campbell, J., Tiryakioğlu, M. (2006). Modelling microstructure and properties: The contributions of grain size, DAS and bifilms. Materials science forum, 519, 1453-1460. doi: https://doi.org/10.4028/www.scientific.net/MSF.519-521.1453
  • 6. Casari, D., Ludwig, T.H., Merlin, M., Arnberg, L., Garagnani, G.L. (2014). The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions. Materials Science and Engineering: A, 610, 414-426. doi:https://doi.org/10.1016/j.msea.2014.05.059
  • 7. Costa, T.A., Dias, M., Gomes, L.G., Rocha, O.L., Garcia, A. (2016). Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy. Journal of Alloys and Compounds, 683, 485-494. doi:https://doi.org/10.1016/j.jallcom.2016.05.099
  • 8. Croucher, T., Butler, D. (1981). Polymer quenching of aluminum castings. Paper presented at the 26th National SAMPE Symposium.
  • 9. Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A, 527(16-17), 3719-3725. doi:https://doi.org/10.1016/j.msea.2010.01.088
  • 10. Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research, 17(5), 287-294. doi:https://doi.org/10.1179/136404604225020704
  • 11. Dispinar, D., Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality. International Journal of Cast Metals Research, 19(1), 5-17. doi:https://doi.org/10.1179/136404606225023300
  • 12. Dispinar, D., Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A, 528(10-11), 3860-3865. doi:https://doi.org/10.1016/j.msea.2011.01.084
  • 13. Dispinar, D., Nordmark, A., Voje, J., Arnberg, L. (2009). Influence of hydrogen content and bi-film index on feeding behaviour of Al-7Si. Paper presented at the 138th TMS Annual Meeting, Shape Casting: 3rd International Symposium, San Francisco, California, USA, (February 2009).
  • 14. Emadi, D., Gruzleski, J., Toguri, J. (1993). The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metallurgical Transactions B, 24(6), 1055-1063. doi:https://doi.org/10.1007/BF02660997
  • 15. Emamy, M., Oliayee, M., Tavighi, K. (2015). Microstructures and tensile properties of Al/2024–Al 4 Sr composite after hot extrusion and T6 heat treatment. Materials Science and Engineering: A, 625, 303-310. doi:https://doi.org/10.1016/j.msea.2014.12.023
  • 16. Guner, A.T., Dispinar, D., Tan, E. (2019). Microstructural and mechanical evolution of semisolid 7075 Al alloy produced by SIMA process at various heat treatment parameters. Arabian Journal for Science and Engineering, 44(2), 1243-1253. doi:https://doi.org/10.1007/s13369-018-3477-7
  • 17. Hwang, J., Doty, H., Kaufman, M. (2008). The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Materials Science and Engineering: A, 488(1-2), 496-504. doi:https://doi.org/10.1016/j.msea.2007.12.026
  • 18. Ibrahim, A., Elgallad, E., Samuel, A., Doty, H., Samuel, F. (2018). Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys. International Journal of Materials Research, 109(4), 314-331. doi:https://doi.org/10.3139/146.111605
  • 19. Kovarik, L., Fraser, H., Mills, M. (2008). GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys. Acta Materialia, 56(17), 4804-4815. doi:https://doi.org/10.1016/j.actamat.2008.05.042
  • 20. Laslaz, G., Laty, P. (1991). Gas porosity and metal cleanliness in aluminum casting alloys. AFS Transactions, 99, 83-90.
  • 21. Lee, S.G., Gokhale, A.M. (2006). Formation of gas induced shrinkage porosity in Mg-alloy high-pressure die-castings. Scripta Materialia, 55(4), 387-390. doi:https://doi.org/10.1016/j.scriptamat.2006.04.040
  • 22. MacKenzies, D. (2002). Quench rate and ageing effects in aluminum AlZnMgCu alloys. Ph. D. Dissertation, University of Missouri-Rolla, Missouri, American.
  • 23. Magno, I.A.B., Souza, F.V.A. d., Barros, A.d.S., Costa, M.O., Nascimento, J.M., Costa, T.A.P.d.S., Rocha, O.F.L.d. (2017). Effect of the T6 heat treatment on microhardness of a directionally solidified aluminum-based 319 alloy. Materials Research (AHEAD), 0-0. doi:http://dx.doi.org/10.1590/1980-5373-mr-2016-0961
  • 24. Mohamed, AM.A., Samuel, F.H. (2012). A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Heat Treatment-Conventional and Novel Applications: InTech. 55-72 http://dx.doi.org/10.5772/79832
  • 25. Mostafaei, M., Ghobadi, M., Uludağ, M., Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B, 47(6), 3469-3475. doi:https://doi.org/10.1007/s11663-016-0786-7
  • 26. Pešička, J., Kužel, R., Dronhofer, A., Eggeler, G. (2003). The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia, 51(16), 4847-4862. doi:https://doi.org/10.1016/S1359-6454(03)00324-0
  • 27. Rana, R.S., Purohit, R., Das, S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications, 2(6), 1-7.
  • 28. Senatorova, O.G., Mikhailova, I.F., Ivanov, A.L., Mitasov, M.M., Sidel’nikov, V.V. (2016). Low-distortion quenching of aluminum alloys in polymer media. Metal Science and Heat Treatment, 57(11-12), 669-672. doi:https://doi.org/10.1007/s11041-016-9940-8
  • 29. Senatorova, O.G., Sidelnikov, V.V., Mihailova, I.F., Fridlyander, I.N., Bedarev, A.S., Spector, J.I., Tihonova, L.A. (2002). Low distortion quenching of aluminium alloys in polymer medium. Materials Science Forum, 396-402:1659-64. doi: https://doi.org/10.4028/www.scientific.net/MSF.396-402.1659
  • 30. Sigworth, G.K., Wang, C. (1993). Mechanisms of porosity formation during solidification: A theoretical analysis. Metallurgical Transactions B, 24(2), 349-364. doi:https://doi.org/10.1007/BF02659138
  • 31. Sjölander, E., Seifeddine, S. (2010). The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology, 210(10), 1249-1259. doi:https://doi.org/10.1016/j.jmatprotec.2010.03.020
  • 32. Sokolowski, J.H., Sun, X., Byczynski, G., Northwood, D., Penrod, D., Thomas, R., Esseltine, A. (1995). The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment. Journal of Materials Processing Technology, 53(1-2), 385-392. doi:https://doi.org/10.1016/0924-0136(95)01995-Q
  • 33. Speer, J.G., Assunção, F.C.R., Matlock, D.K., Edmonds, D.V. (2005). The" quenching and partitioning" process: background and recent progress. Materials Research, 8(4), 417-423. doi:http://dx.doi.org/10.1590/S1516-14392005000400010
  • 34. Staley, J., Brown, R., Schmidt, R. (1972). Heat treating characteristics of high strength Al-Zn-Mg-Cu alloys with and without silver additions. Metallurgical and Materials Transactions B, 3(1), 191-199. doi:https://doi.org/10.1007/BF02680598
  • 35. Sverdlin, A., Totten, G., Vebster, G. (1996). Polyalkyleneglycol base quenching media for heat treatment of aluminum alloys. Metallovedenie i Termicheskaya Obrabotka Metallov, 6, 17-19.
  • 36. Tan, E., Tarakcilar, A.R., Dispinar, D. (2012). Effect of melt quality and quenching temperature on the mechanical properties of SIMA 2024 and 7075. Advanced Materials Research, 445,171-76. doi:https://doi.org/10.4028/www.scientific.net/AMR.445.171
  • 37. Totten, G.E., Mackenzie, D.S. (2000). Aluminum quenching technology: a review. Materials Science Forum, 331(1), 589-594.
  • 38. Uludağ, M., Çetin, R., Dispinar, D. (2018). Freezing range, melt quality, and hot tearing in Al-Si alloys. Metallurgical and Materials Transactions A, 49(5), 1948-1961. doi:https://doi.org/10.1007/s11661-018-4512-8
  • 39. Uludağ, M., Dişpinar, D. (2017). Assessment of mechanism of pore formation in directionally solidified A356 alloy. Archives of Foundry Engineering, 17(1), 157-162. doi:DOI: 10.1515/afe-2017-0029
  • 40. Uludağ, M., Gemi, L., Dispinar, D. (2016). Efficiency of Sr Modification in Hypereutectic Al-Si Alloys. International journal of scientific and technical research in engineering (IJSTRE), 1(8), 21-26.
  • 41. Uludağ, M., Gemi, L., Eryılmaz, M.R., Dışpınar, D. (2015). The effect of Sr modification and holding time on Si morphology and mechanical properties of ETIAL 195 alloy. Pamukkale University Journal of Engineering Sciences, 21(8), 348-351. doi:https://dergipark.org.tr/tr/pub/pajes/issue/20563/219143
  • 42. Uludağ, M., Uyaner, M., Yilmaz, F., Dişpinar, D. (2015). Mechanical properties and melt quality relationship of Sr-modified Al-12Si alloy. Archives of Foundry Engineering, 15(4), 134-140. doi: https://doi.org/10.1515/afe-2015-0093
  • 43. Uludağ, M., Cetin, R., Gemi, L., Dispinar, D. (2018). Change in porosity of A356 by holding time and its effect on mechanical properties. Journal of Materials Engineering and Performance, 27(10), 5141-5151. doi:https://doi.org/10.1007/s11665-018-3534-0
  • 44. Uludağ, M., Gemi, L., Çetin, R., Dispinar, D. (2016). The effect of holding time and solidification rate on porosity of A356. American Journal of Engineering Research (AJER), 5(12), 271-275.
  • 45. Uludağ, M., Yazman, Ş., Gemi, L., Bakircioğlu, B., Erzi, E., Dispinar, D. (2018). Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy. Journal of Testing and Evaluation, 46(6), 2592-2603. doi: https://doi.org/10.1520/JTE20170083
  • 46. Yamamura, S., Shiota, H., Murakami, K., Nakajima, H. (2001). Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen. Materials Science and Engineering: A, 318(1-2), 137-143. doi:https://doi.org/10.1016/S0921-5093(01)01263-1
  • 47. Zhang, D., Zheng, L. (1996). The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metallurgical and Materials Transactions A, 27(12), 3983-3991. doi:https://doi.org/10.1007/BF02595647
  • 48. Zhilyaev, A., Nurislamova, G., Kim, B.K., Baró, M., Szpunar, J., Langdon, T. (2003). Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia, 51(3), 753-765. doi:https://doi.org/10.1016/S1359-6454(02)00466-4

ETİAL 221 Alaşımında Katılaşma Hızı ve Su Verme Ortamlarının Mekanik Özelliklere Etkisinin İstatistiksel Analizi

Yıl 2020, Cilt: 25 Sayı: 1, 169 - 186, 30.04.2020
https://doi.org/10.17482/uumfd.468870

Öz

Bu çalışmada, primer olarak temin edilen ETİAL 221 alaşımında farklı kalıp türlerinin ve farklı iç gerilmelere sahip su verme ortamlarının mekanik özelliklere etkisi araştırılmış ve istatistiksel olarak incelenmiştir. Alaşımın ilk olarak kokil kalıba, daha sonra 40/45 ve 60/65 AFS boyutuna sahip kumlarla hazırlanmış kum kalıba dökümleri gerçekleştirilmiştir. Dökümden elde edilen parçalar oda sıcaklığında suda, yağda ve kaynayan suda su verme işlemleri ile üç farklı T6 çökelme sertleşmesine tabi tutulmuştur. Soğuma hızlarına bağlı katılaşma hızındaki farklılıkların ve su verme ortamlarına bağlı iç gerilme farklılıklarının mekanik özellikler üzerine etkisi araştırılmıştır. Ayrıca, porozitedeki değişim Arşimet prensibine göre hesaplanmış ve elde edilen sonuçlar mekanik özellikler ilişkilendirilmiştir. Sonuç olarak, kalıp türlerinden kokil kalıbın, su verme ortamlarından kaynayan suda su verme ortamının bu çalışma için en iyi mekanik özellik sergilediği görülmüştür.

Kaynakça

  • 1. Ammar, H.R., Moreau, C., Samuel, A.M., Samuel, F.H., Doty, H.W. (2008). Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Materials Science and Engineering: A, 489(1), 426-438. doi:https://doi.org/10.1016/j.msea.2007.12.032
  • 2. Beitz, H. (1998). Non-combustible water-based quenchants in forging shops for automotive parts--latest development. 1 st International Automotive Heat Treating Conference, 106-109.
  • 3. Caceres, C., Davidson, C., Griffiths, J., Newton, C. (2002). Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering: A, 325(1-2), 344-355. doi:https://doi.org/10.1016/S0921-5093(01)01467-8
  • 4. Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design: Butterworth-Heinemann. 978-0-444-63509-9:978-0-444-63509-9
  • 5. Campbell, J., Tiryakioğlu, M. (2006). Modelling microstructure and properties: The contributions of grain size, DAS and bifilms. Materials science forum, 519, 1453-1460. doi: https://doi.org/10.4028/www.scientific.net/MSF.519-521.1453
  • 6. Casari, D., Ludwig, T.H., Merlin, M., Arnberg, L., Garagnani, G.L. (2014). The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions. Materials Science and Engineering: A, 610, 414-426. doi:https://doi.org/10.1016/j.msea.2014.05.059
  • 7. Costa, T.A., Dias, M., Gomes, L.G., Rocha, O.L., Garcia, A. (2016). Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy. Journal of Alloys and Compounds, 683, 485-494. doi:https://doi.org/10.1016/j.jallcom.2016.05.099
  • 8. Croucher, T., Butler, D. (1981). Polymer quenching of aluminum castings. Paper presented at the 26th National SAMPE Symposium.
  • 9. Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A, 527(16-17), 3719-3725. doi:https://doi.org/10.1016/j.msea.2010.01.088
  • 10. Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research, 17(5), 287-294. doi:https://doi.org/10.1179/136404604225020704
  • 11. Dispinar, D., Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality. International Journal of Cast Metals Research, 19(1), 5-17. doi:https://doi.org/10.1179/136404606225023300
  • 12. Dispinar, D., Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A, 528(10-11), 3860-3865. doi:https://doi.org/10.1016/j.msea.2011.01.084
  • 13. Dispinar, D., Nordmark, A., Voje, J., Arnberg, L. (2009). Influence of hydrogen content and bi-film index on feeding behaviour of Al-7Si. Paper presented at the 138th TMS Annual Meeting, Shape Casting: 3rd International Symposium, San Francisco, California, USA, (February 2009).
  • 14. Emadi, D., Gruzleski, J., Toguri, J. (1993). The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metallurgical Transactions B, 24(6), 1055-1063. doi:https://doi.org/10.1007/BF02660997
  • 15. Emamy, M., Oliayee, M., Tavighi, K. (2015). Microstructures and tensile properties of Al/2024–Al 4 Sr composite after hot extrusion and T6 heat treatment. Materials Science and Engineering: A, 625, 303-310. doi:https://doi.org/10.1016/j.msea.2014.12.023
  • 16. Guner, A.T., Dispinar, D., Tan, E. (2019). Microstructural and mechanical evolution of semisolid 7075 Al alloy produced by SIMA process at various heat treatment parameters. Arabian Journal for Science and Engineering, 44(2), 1243-1253. doi:https://doi.org/10.1007/s13369-018-3477-7
  • 17. Hwang, J., Doty, H., Kaufman, M. (2008). The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Materials Science and Engineering: A, 488(1-2), 496-504. doi:https://doi.org/10.1016/j.msea.2007.12.026
  • 18. Ibrahim, A., Elgallad, E., Samuel, A., Doty, H., Samuel, F. (2018). Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys. International Journal of Materials Research, 109(4), 314-331. doi:https://doi.org/10.3139/146.111605
  • 19. Kovarik, L., Fraser, H., Mills, M. (2008). GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys. Acta Materialia, 56(17), 4804-4815. doi:https://doi.org/10.1016/j.actamat.2008.05.042
  • 20. Laslaz, G., Laty, P. (1991). Gas porosity and metal cleanliness in aluminum casting alloys. AFS Transactions, 99, 83-90.
  • 21. Lee, S.G., Gokhale, A.M. (2006). Formation of gas induced shrinkage porosity in Mg-alloy high-pressure die-castings. Scripta Materialia, 55(4), 387-390. doi:https://doi.org/10.1016/j.scriptamat.2006.04.040
  • 22. MacKenzies, D. (2002). Quench rate and ageing effects in aluminum AlZnMgCu alloys. Ph. D. Dissertation, University of Missouri-Rolla, Missouri, American.
  • 23. Magno, I.A.B., Souza, F.V.A. d., Barros, A.d.S., Costa, M.O., Nascimento, J.M., Costa, T.A.P.d.S., Rocha, O.F.L.d. (2017). Effect of the T6 heat treatment on microhardness of a directionally solidified aluminum-based 319 alloy. Materials Research (AHEAD), 0-0. doi:http://dx.doi.org/10.1590/1980-5373-mr-2016-0961
  • 24. Mohamed, AM.A., Samuel, F.H. (2012). A review on the heat treatment of Al-Si-Cu/Mg casting alloys. Heat Treatment-Conventional and Novel Applications: InTech. 55-72 http://dx.doi.org/10.5772/79832
  • 25. Mostafaei, M., Ghobadi, M., Uludağ, M., Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B, 47(6), 3469-3475. doi:https://doi.org/10.1007/s11663-016-0786-7
  • 26. Pešička, J., Kužel, R., Dronhofer, A., Eggeler, G. (2003). The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia, 51(16), 4847-4862. doi:https://doi.org/10.1016/S1359-6454(03)00324-0
  • 27. Rana, R.S., Purohit, R., Das, S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications, 2(6), 1-7.
  • 28. Senatorova, O.G., Mikhailova, I.F., Ivanov, A.L., Mitasov, M.M., Sidel’nikov, V.V. (2016). Low-distortion quenching of aluminum alloys in polymer media. Metal Science and Heat Treatment, 57(11-12), 669-672. doi:https://doi.org/10.1007/s11041-016-9940-8
  • 29. Senatorova, O.G., Sidelnikov, V.V., Mihailova, I.F., Fridlyander, I.N., Bedarev, A.S., Spector, J.I., Tihonova, L.A. (2002). Low distortion quenching of aluminium alloys in polymer medium. Materials Science Forum, 396-402:1659-64. doi: https://doi.org/10.4028/www.scientific.net/MSF.396-402.1659
  • 30. Sigworth, G.K., Wang, C. (1993). Mechanisms of porosity formation during solidification: A theoretical analysis. Metallurgical Transactions B, 24(2), 349-364. doi:https://doi.org/10.1007/BF02659138
  • 31. Sjölander, E., Seifeddine, S. (2010). The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology, 210(10), 1249-1259. doi:https://doi.org/10.1016/j.jmatprotec.2010.03.020
  • 32. Sokolowski, J.H., Sun, X., Byczynski, G., Northwood, D., Penrod, D., Thomas, R., Esseltine, A. (1995). The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment. Journal of Materials Processing Technology, 53(1-2), 385-392. doi:https://doi.org/10.1016/0924-0136(95)01995-Q
  • 33. Speer, J.G., Assunção, F.C.R., Matlock, D.K., Edmonds, D.V. (2005). The" quenching and partitioning" process: background and recent progress. Materials Research, 8(4), 417-423. doi:http://dx.doi.org/10.1590/S1516-14392005000400010
  • 34. Staley, J., Brown, R., Schmidt, R. (1972). Heat treating characteristics of high strength Al-Zn-Mg-Cu alloys with and without silver additions. Metallurgical and Materials Transactions B, 3(1), 191-199. doi:https://doi.org/10.1007/BF02680598
  • 35. Sverdlin, A., Totten, G., Vebster, G. (1996). Polyalkyleneglycol base quenching media for heat treatment of aluminum alloys. Metallovedenie i Termicheskaya Obrabotka Metallov, 6, 17-19.
  • 36. Tan, E., Tarakcilar, A.R., Dispinar, D. (2012). Effect of melt quality and quenching temperature on the mechanical properties of SIMA 2024 and 7075. Advanced Materials Research, 445,171-76. doi:https://doi.org/10.4028/www.scientific.net/AMR.445.171
  • 37. Totten, G.E., Mackenzie, D.S. (2000). Aluminum quenching technology: a review. Materials Science Forum, 331(1), 589-594.
  • 38. Uludağ, M., Çetin, R., Dispinar, D. (2018). Freezing range, melt quality, and hot tearing in Al-Si alloys. Metallurgical and Materials Transactions A, 49(5), 1948-1961. doi:https://doi.org/10.1007/s11661-018-4512-8
  • 39. Uludağ, M., Dişpinar, D. (2017). Assessment of mechanism of pore formation in directionally solidified A356 alloy. Archives of Foundry Engineering, 17(1), 157-162. doi:DOI: 10.1515/afe-2017-0029
  • 40. Uludağ, M., Gemi, L., Dispinar, D. (2016). Efficiency of Sr Modification in Hypereutectic Al-Si Alloys. International journal of scientific and technical research in engineering (IJSTRE), 1(8), 21-26.
  • 41. Uludağ, M., Gemi, L., Eryılmaz, M.R., Dışpınar, D. (2015). The effect of Sr modification and holding time on Si morphology and mechanical properties of ETIAL 195 alloy. Pamukkale University Journal of Engineering Sciences, 21(8), 348-351. doi:https://dergipark.org.tr/tr/pub/pajes/issue/20563/219143
  • 42. Uludağ, M., Uyaner, M., Yilmaz, F., Dişpinar, D. (2015). Mechanical properties and melt quality relationship of Sr-modified Al-12Si alloy. Archives of Foundry Engineering, 15(4), 134-140. doi: https://doi.org/10.1515/afe-2015-0093
  • 43. Uludağ, M., Cetin, R., Gemi, L., Dispinar, D. (2018). Change in porosity of A356 by holding time and its effect on mechanical properties. Journal of Materials Engineering and Performance, 27(10), 5141-5151. doi:https://doi.org/10.1007/s11665-018-3534-0
  • 44. Uludağ, M., Gemi, L., Çetin, R., Dispinar, D. (2016). The effect of holding time and solidification rate on porosity of A356. American Journal of Engineering Research (AJER), 5(12), 271-275.
  • 45. Uludağ, M., Yazman, Ş., Gemi, L., Bakircioğlu, B., Erzi, E., Dispinar, D. (2018). Relationship between machinability, microstructure, and mechanical properties of Al-7Si alloy. Journal of Testing and Evaluation, 46(6), 2592-2603. doi: https://doi.org/10.1520/JTE20170083
  • 46. Yamamura, S., Shiota, H., Murakami, K., Nakajima, H. (2001). Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen. Materials Science and Engineering: A, 318(1-2), 137-143. doi:https://doi.org/10.1016/S0921-5093(01)01263-1
  • 47. Zhang, D., Zheng, L. (1996). The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metallurgical and Materials Transactions A, 27(12), 3983-3991. doi:https://doi.org/10.1007/BF02595647
  • 48. Zhilyaev, A., Nurislamova, G., Kim, B.K., Baró, M., Szpunar, J., Langdon, T. (2003). Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia, 51(3), 753-765. doi:https://doi.org/10.1016/S1359-6454(02)00466-4
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Muhammet Uludağ 0000-0001-9150-3292

Lokman Gemi 0000-0002-9895-6574

Derya Dispinar Bu kişi benim 0000-0001-9550-6933

Yayımlanma Tarihi 30 Nisan 2020
Gönderilme Tarihi 10 Ekim 2018
Kabul Tarihi 13 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 1

Kaynak Göster

APA Uludağ, M., Gemi, L., & Dispinar, D. (2020). STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 169-186. https://doi.org/10.17482/uumfd.468870
AMA Uludağ M, Gemi L, Dispinar D. STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY. UUJFE. Nisan 2020;25(1):169-186. doi:10.17482/uumfd.468870
Chicago Uludağ, Muhammet, Lokman Gemi, ve Derya Dispinar. “STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 1 (Nisan 2020): 169-86. https://doi.org/10.17482/uumfd.468870.
EndNote Uludağ M, Gemi L, Dispinar D (01 Nisan 2020) STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 169–186.
IEEE M. Uludağ, L. Gemi, ve D. Dispinar, “STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY”, UUJFE, c. 25, sy. 1, ss. 169–186, 2020, doi: 10.17482/uumfd.468870.
ISNAD Uludağ, Muhammet vd. “STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (Nisan 2020), 169-186. https://doi.org/10.17482/uumfd.468870.
JAMA Uludağ M, Gemi L, Dispinar D. STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY. UUJFE. 2020;25:169–186.
MLA Uludağ, Muhammet vd. “STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 1, 2020, ss. 169-86, doi:10.17482/uumfd.468870.
Vancouver Uludağ M, Gemi L, Dispinar D. STATISTICAL ANALYSIS ON THE EFFECT OF THE SOLIDIFICATION RATE AND QUENCHING MEDIUMS ON MECHANICAL PROPERTIES IN ETIAL 221 ALLOY. UUJFE. 2020;25(1):169-86.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr