Research Article
BibTex RIS Cite

EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ

Year 2020, Volume: 25 Issue: 1, 419 - 434, 30.04.2020
https://doi.org/10.17482/uumfd.633858

Abstract

Bu çalışmada, fotovoltaik panellerin performans parametrelerine (kısa-devre akımı, açık-devre gerilimi ve maksimum çıkış gücü) ait sıcaklık katsayılarını elde etmek için yeni bir yöntem ortaya konmuştur. Eğri uydurma tekniğine dayanan bu yeni yöntem, ölçülen ve hesaplanan performans parametreleri arasındaki en küçük hata değerlerini sağlayan sıcaklık katsayılarını elde etmektedir. Yeni yöntem silikon tabanlı bir fotovoltaik panel için test edilmiştir. Bu panelin; yeni yöntemden elde edilen sıcaklık katsayıları ve kataloğunda sunulan sıcaklık katsayıları dış ölçülen performans parametreleri kullanılarak ortalama karekök hata yaklaşımı ile karşılaştırılmıştır. Sonuç olarak, yeni yöntemden elde edilen sıcaklık katsayılarının, katalog sıcaklık katsayılarından daha iyi bir doğrulukla performans parametrelerinin sıcaklık bağımlılığını ifade ettiği ortaya konmuştur. Mevcut yöntemlerden farklı olarak, yeni yöntem sıcaklık katsayılarını elde etmek için sabit parametrelere, belirli kısıtlamalara veya ilave bir deneysel düzeneğe ihtiyaç duymamaktadır.

Supporting Institution

Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

08/10 ve 13/181

References

  • 1. Dupré, O., 2015. Physics of the thermal behavior of photovoltaic devices To cite this version : HAL Id : tel-01368592 Physics of the thermal behavior of photovoltaic devices.
  • 2. Dupré, O., Vaillon, R., Green, M.A., 2015. Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cells 140, 92–100. doi:10.1016/j.solmat.2015.03.025
  • 3. Eke, R., Demircan, H., 2013. Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Convers. Manag. 65, 580–586. doi:10.1016/j.enconman.2012.09.007
  • 4. Fanney, A.H., Davis, M.W., Dougherty, B.P., King, D.L., Boyson, W.E., Kratochvil, J. a., 2006. Comparison of Photovoltaic Module Performance Measurements. J. Sol. Energy Eng. 128, 152. doi:10.1115/1.2192559
  • 5. Green, M.A., 2003. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovoltaics Res. Appl. 11, 333–340. doi:10.1002/pip.496
  • 6. Han, H., Dong, X., Li, B., Yan, H., Verlinden, P.J., Liu, J., Huang, J., Liang, Z., Shen, H., 2018. Degradation analysis of crystalline silicon photovoltaic modules exposed over 30 years in hot-humid climate in China. Sol. Energy 170, 510–519. doi:10.1016/j.solener.2018.05.027
  • 7. Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M., Werner, J.H., 2009. Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol. Energy Mater. Sol. Cells 93, 1095–1099. doi:10.1016/j.solmat.2008.12.024
  • 8. Marion, B., Kroposki, B., Emery, K., Cueto, J., Myers, D., Osterwald, C., 1999. Validation of a Photovoltaic Module Energy Ratings Procedure at NREL.
  • 9. Osterwald, C.R., 1986. Translation of device performance measurements to reference conditions. Sol. Cells,18,3-4,Pages 269-279 80401, 269–279.
  • 10. Osterwald, C.R., Glatfelter, T., Burdick, J., 1987. Comparison of the Temperature Coefficients of the Basic I-V parameters for Various Types of Solar Cells. Devices, Energy Convers. 188–193.
  • 11. Paulescu, M., Badescu, V., Dughir, C., 2014. New procedure and field-tests to assess photovoltaic module performance. Energy 70, 49–57. doi:10.1016/j.energy.2014.03.085
  • 12. Perraki, V., 2013. Temperature Dependence on the Photovoltaic Properties of Selected Thin-Film Modules. Int. J. Renew. Sustain. Energy 2, 140. doi:10.11648/j.ijrse.20130204.12
  • 13. Şentürk, A., 2018a. New method for computing single diode model parameters of photovoltaic modules. Renew. Energy 128, 30–36. doi:10.1016/j.renene.2018.05.065
  • 14. Şentürk, A., 2018b. Fotovoltaik modüllerin akım-gerilim eğrilerinin simülasyonunda kullanılacak olan yöntemin seçimi. Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg. 20, 1–14. doi:10.25092/baunfbed.411779
  • 15. Şentürk, A., 2016. Yeni Bir Yöntem İle Kristal Silisyum Tabanlı Fotovoltaik Modüllerin Elektriksel Performansının Hesaplanması Ve Sıcaklık Katsayılarının (İç Ve Dış) Performansa Olan Etkisinin İncelenmesi. Muğla Sıtkı Kocman University.
  • 16. Senturk, A., Eke, R., 2017. A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values. Renew. Energy 103, 58–69. doi:10.1016/j.renene.2016.11.025
  • 17. Şentürk, A., Eke, R., 2018. New method to compare indoor and outdoor temperature coefficients of photovoltaıc modules. Uludağ Univ. J. Fac. Eng. 23, 127–138. doi:10.17482/uumfd.298338
  • 18. Skoplaki, E., Palyvos, J. a., 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83, 614–624. doi:10.1016/j.solener.2008.10.008
  • 19. Tsankov, P., 2015. Study Of The Temperature Coefficients Of Amorphous And Polycrystalline Silicon Photovoltaic Modules Under Real Operating Conditions. Renew. energy sources 2, 123–129. doi:10.7251/COMEN1502123T
  • 20. van Dyk, E.E., Scott, B.J., Meyer, E.L., Leitch, A.W.R., 2000. Temperature Dependence Of Crystallıne Sılıcon Photovoltaıc Module. South African J. Sci. 96, April 2000 96, 198–200.

A NEW METHOD BASED ON CURVE FITTING TECHNIQUE TO ASSESS THE TEMPERATURE COEFFICIENTS OF PHOTOVOLTAIC MODULES

Year 2020, Volume: 25 Issue: 1, 419 - 434, 30.04.2020
https://doi.org/10.17482/uumfd.633858

Abstract

In this study, a new method is introduced to obtain the temperature coefficients of performance
parameters (short-circuit current, open-circuit voltage and the output peak power) of photovoltaic modules.
This new method based on the curve fitting technique obtains the temperature coefficients that guaranty the
smallest error values between measured and calculated performance parameters. The new method has been
tested for a silicon-based photovoltaic module. The temperature coefficients obtained from the new method
and the datasheet-supplied temperature coefficients of this module are compared with each other by using
performance parameters measured in the field through root mean square error tool. As a result, it has been
concluded that temperature coefficients obtained from the proposed new method express the temperature
dependency of the performance parameters more accurately than the data-sheet supplied temperature
coefficients. Unlike existing methods, the new method does not require fixed parameters, specific
constraints, or an additional experimental setup to obtain temperature coefficients.

Project Number

08/10 ve 13/181

References

  • 1. Dupré, O., 2015. Physics of the thermal behavior of photovoltaic devices To cite this version : HAL Id : tel-01368592 Physics of the thermal behavior of photovoltaic devices.
  • 2. Dupré, O., Vaillon, R., Green, M.A., 2015. Physics of the temperature coefficients of solar cells. Sol. Energy Mater. Sol. Cells 140, 92–100. doi:10.1016/j.solmat.2015.03.025
  • 3. Eke, R., Demircan, H., 2013. Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey. Energy Convers. Manag. 65, 580–586. doi:10.1016/j.enconman.2012.09.007
  • 4. Fanney, A.H., Davis, M.W., Dougherty, B.P., King, D.L., Boyson, W.E., Kratochvil, J. a., 2006. Comparison of Photovoltaic Module Performance Measurements. J. Sol. Energy Eng. 128, 152. doi:10.1115/1.2192559
  • 5. Green, M.A., 2003. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovoltaics Res. Appl. 11, 333–340. doi:10.1002/pip.496
  • 6. Han, H., Dong, X., Li, B., Yan, H., Verlinden, P.J., Liu, J., Huang, J., Liang, Z., Shen, H., 2018. Degradation analysis of crystalline silicon photovoltaic modules exposed over 30 years in hot-humid climate in China. Sol. Energy 170, 510–519. doi:10.1016/j.solener.2018.05.027
  • 7. Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M., Werner, J.H., 2009. Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol. Energy Mater. Sol. Cells 93, 1095–1099. doi:10.1016/j.solmat.2008.12.024
  • 8. Marion, B., Kroposki, B., Emery, K., Cueto, J., Myers, D., Osterwald, C., 1999. Validation of a Photovoltaic Module Energy Ratings Procedure at NREL.
  • 9. Osterwald, C.R., 1986. Translation of device performance measurements to reference conditions. Sol. Cells,18,3-4,Pages 269-279 80401, 269–279.
  • 10. Osterwald, C.R., Glatfelter, T., Burdick, J., 1987. Comparison of the Temperature Coefficients of the Basic I-V parameters for Various Types of Solar Cells. Devices, Energy Convers. 188–193.
  • 11. Paulescu, M., Badescu, V., Dughir, C., 2014. New procedure and field-tests to assess photovoltaic module performance. Energy 70, 49–57. doi:10.1016/j.energy.2014.03.085
  • 12. Perraki, V., 2013. Temperature Dependence on the Photovoltaic Properties of Selected Thin-Film Modules. Int. J. Renew. Sustain. Energy 2, 140. doi:10.11648/j.ijrse.20130204.12
  • 13. Şentürk, A., 2018a. New method for computing single diode model parameters of photovoltaic modules. Renew. Energy 128, 30–36. doi:10.1016/j.renene.2018.05.065
  • 14. Şentürk, A., 2018b. Fotovoltaik modüllerin akım-gerilim eğrilerinin simülasyonunda kullanılacak olan yöntemin seçimi. Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg. 20, 1–14. doi:10.25092/baunfbed.411779
  • 15. Şentürk, A., 2016. Yeni Bir Yöntem İle Kristal Silisyum Tabanlı Fotovoltaik Modüllerin Elektriksel Performansının Hesaplanması Ve Sıcaklık Katsayılarının (İç Ve Dış) Performansa Olan Etkisinin İncelenmesi. Muğla Sıtkı Kocman University.
  • 16. Senturk, A., Eke, R., 2017. A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values. Renew. Energy 103, 58–69. doi:10.1016/j.renene.2016.11.025
  • 17. Şentürk, A., Eke, R., 2018. New method to compare indoor and outdoor temperature coefficients of photovoltaıc modules. Uludağ Univ. J. Fac. Eng. 23, 127–138. doi:10.17482/uumfd.298338
  • 18. Skoplaki, E., Palyvos, J. a., 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83, 614–624. doi:10.1016/j.solener.2008.10.008
  • 19. Tsankov, P., 2015. Study Of The Temperature Coefficients Of Amorphous And Polycrystalline Silicon Photovoltaic Modules Under Real Operating Conditions. Renew. energy sources 2, 123–129. doi:10.7251/COMEN1502123T
  • 20. van Dyk, E.E., Scott, B.J., Meyer, E.L., Leitch, A.W.R., 2000. Temperature Dependence Of Crystallıne Sılıcon Photovoltaıc Module. South African J. Sci. 96, April 2000 96, 198–200.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Ali Şentürk 0000-0001-7033-2957

Project Number 08/10 ve 13/181
Publication Date April 30, 2020
Submission Date October 16, 2019
Acceptance Date March 10, 2020
Published in Issue Year 2020 Volume: 25 Issue: 1

Cite

APA Şentürk, A. (2020). EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 419-434. https://doi.org/10.17482/uumfd.633858
AMA Şentürk A. EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ. UUJFE. April 2020;25(1):419-434. doi:10.17482/uumfd.633858
Chicago Şentürk, Ali. “EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 1 (April 2020): 419-34. https://doi.org/10.17482/uumfd.633858.
EndNote Şentürk A (April 1, 2020) EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 419–434.
IEEE A. Şentürk, “EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ”, UUJFE, vol. 25, no. 1, pp. 419–434, 2020, doi: 10.17482/uumfd.633858.
ISNAD Şentürk, Ali. “EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (April 2020), 419-434. https://doi.org/10.17482/uumfd.633858.
JAMA Şentürk A. EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ. UUJFE. 2020;25:419–434.
MLA Şentürk, Ali. “EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 1, 2020, pp. 419-34, doi:10.17482/uumfd.633858.
Vancouver Şentürk A. EĞRİ UYDURMA TEKNİĞİNE DAYALI YENİ BİR YÖNTEMLE FOTOVOLTAİK PANELLERİN SICAKLIK KATSAYILARININ ELDE EDİLMESİ. UUJFE. 2020;25(1):419-34.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.