Research Article
BibTex RIS Cite

GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ

Year 2020, Volume: 25 Issue: 1, 325 - 340, 30.04.2020
https://doi.org/10.17482/uumfd.649454

Abstract

Bilindiği üzere Türkiye’deki yapı stoğunun büyük bir kısmı deprem güvenilirliği düşük binalardan oluşmaktadır ve bu binaların şiddetli depremler altında ağır hasar görebilme ve hatta göçme olasılıkları yüksektir. Bu sebeple, deprem güvenilirliği yüksek yapılar tasarlamak veya mevcut yapıların deprem güvenilirliğini doğru belirlemek için kullanılan hesap yöntemlerinin gerçeğe en yakın sonuçlar verecek yöntemler olması gerekmektedir. Deprem güvenilirliğinin belirlenmesinde şekil değiştirmeye göre tasarım yaklaşımı yaygınlaşmakta, deprem yönetmeliklerinde neredeyse zorunlu hale getirilmektedir. Türkiye Bina Deprem Yönetmeliği (TBDY) 2018, performansa dayalı tasarımda hasar sınırları olarak malzeme birim şekil değiştirmelerini ve/veya plastik dönmeleri kullanmaktadır. Fakat bilindiği üzere deprem yükleri çevrimsel yüklerdir ve çevrim sayısına bağlı olarak sönümlenen enerji, buna bağlı olarak da birikimli hasar değişmektedir. Hem yer değiştirmeye bağlı sünekliği hem de bu birikimli hasarı dikkate alan hasar indeksi yöntemleri, hasar seviyesinin elde edilmesinde etkili bir yöntemdir. Bu çalışmada, 1975 yılı Türk Deprem Yönetmeliği koşullarına göre tasarlanmış ve inşa edilmiş mevcut bir betonarme okul binasının deprem performansı ve aynı binanın TBDY 2018’e göre tasarlanması durumundaki deprem performansı hasar indeksi yöntemlerinden biri olan Park-Ang Hasar İndeksi ile araştırılmıştır. Analitik modeli IDARC bilgisayar programında hazırlanan binalarda zaman tanım alanında doğrusal olmayan analiz yapılmış ve hasar indeksleri elde edilerek deprem performansları bulunmuştur. 

References

  • 1. Ang, A.H-S., Kim, W.J. ve Kim, S.B. (1993) Damage estimation of existing bridge structures, Structural Engineering in Natural Hazards Mitigation: Proc. ASCE Structures Congress, Irvine CA, (2) 1137-1142.
  • 2. ATC40, (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, California.
  • 3. Banon, H., Biggs, J.M., ve Irvine, H.M. (1980) Prediction of seismic damage in reinforced concrete frames”, Seismic Behavior and Design of Buildings, Report No. 3, MIT, Cambridge, Mass, May.
  • 4. Banon, H., Biggs, J.M., ve Irvine, H.M. (1981) Seismic damage in reinforced concrete frames, Journal of Structrual Engineering, ASCE, 107(9), 1713-1729.
  • 5. Börekçi, M., Kırçıl, M.S. ve Ekiz, İ. (2018) Inelastic displacement ratios for evaluation of degrading peak-oriented SDOF systems, Periodica Polytechnica Civil Engineering, 62(1), 33-47. https://doi.org/10.3311/PPci.10635
  • 6. Carr, A.J. ve Tabuchi, M. (1993) The structural ductility and the damage index for reinforced concrete structure under seismic excitation, 2nd European conference on Structural Dynamics, Trondheim, Norway, Haziran
  • 7. Chopra, A.K. (2000) Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Edition, Prentice Hall, New Jersey.
  • 8. Chung, Y.S., Meyer, C. ve Shinozuka, M. (1989) Modeling of concrete damage, ACI Structural Journal, 86(3), 259-271. https://doi.org/10.14359/2895
  • 9. Cosenza, E., Manfredi, G. ve Ramasco, R. (1993) The use of damage functionals in earthquake engineering: a comparison between different models, Earthquake Engineering and Structural Dynamics, 22(10), 855-868. https://doi.org/10.1002/eqe.4290221003
  • 10. Diaz, S.A., Pujades, L.G., Barbat, A.H., Vargas, Y.F. ve Hidalgo-Leiva, D.A. (2017) Energy damage index based on capacity and response spectra, Engineering Structures, 152, 424-436. https://doi.org/10.1016/j.engstruct.2017.09.019
  • 11. EC 8 (2011) Euro Code 8, Seismic Design of Buildings, European Commission Joint Research Centre, Italy.
  • 12. Fahjan, Y.M. (2008) Türkiye Deprem Yönetmeliği (DBYBHY, 2007) tasarım ivme spektrumuna uygun gerçek deprem kayıtlarının seçilmesi ve ölçeklenmesi, Teknik Dergi, 19(3), 4423-4444.
  • 13. Fajfar, P. (1992) Equivalent ductility factors, taking into account low-cycle fatigue, Earthquake Engineering and Structural Dynamics, 21(10), 837-848. https://doi.org/10.1002/eqe.4290211001
  • 14. Fajfar, P., ve Krawinkler, H. (1997) Seismic design methodologies for the next generation of codes, Proceedings of International Workshop held in Bled, Balkema, The Netherlands. https://doi.org/10.1201/9780203740019
  • 15. FEMA 356 (1997) Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington.
  • 16. Ghobarah, A., Abou-Elfath, H. ve Biddah, A. (1999) Response-based damage assessment of structures, Earthquake Engineering and Structural Dynamics, 28(1), 79-104.
  • 17. Ghosh, S. ve Collins, K.R. (2006) Merging energy-based design criteria and reliability-based methods: exploring a new concept, Earthquake Engineering and Structural Dynamics, 35(13), 1677-1698. https://doi.org/10.1002/eqe.602
  • 18. Ghosh, S., Datta, D. ve Katakdhond, A.A. (2011) Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems, Engineering Structures, 33(9), 2509-2524. https://doi.org/10.1016/j.engstruct.2011.04.023
  • 19. Hwang, T.H. ve Scribner, C.F. (1984) R/C member cyclic response during various loadings, Journal of Structural Engineering, ASCE, 110(3), 477-489. https://doi.org/10.1061/(asce)0733-9445(1984)110:3(477)
  • 20. IDARC V6.1 (2006) A Computer Program for the Inelastic Damage Analysis of Buildings, NCEER, State University of New York at Buffalo.
  • 21. Jeong, G.D. ve Iwan, W.D. (1988) Effect of earthquake duration on damage of structures, Earthquake Engineering and Structural Dynamics, 16(8), 1201-1211. https://doi.org/10.1002/eqe.4290160808
  • 22. Katsanos, E.I., Sextos, A.G. ve Manolis, G.D. (2010) Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective, Soil Dynamics and Earthquake Engineering, 30(4), 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005
  • 23. Kent, D.C. ve Park, R. (1971) Flexural members with confined concrete, Journal of Structural Division, 97(ST7), 1969-1990.
  • 24. Kim, T.-H., Lee, K.-M., Chung, Y.-S. ve Shin H.M. (2005) Seismic damage assessment of reinforced concrete bridge columns, Engineering Structures, 27(4), 576-592.
  • 25. Kunnath, S.K., Reinhorn, A.M. ve Lobo, R.F. (1992) IDARCversion 3.0: A Computer Program for the Inelastic Damage Analysis of Reinforced Concrete Structures, Report No. NCEER 92-0022, National Center for Earthquake Engineering and Research, Buffalo.
  • 26. Kunnath, S.K. ve Jenne, C. (1994) Seismic damage assessment of inelastic RC structures, 5th US National Conference on Earthquake Engineering, Chicago, 1, 55-64, July.
  • 27. Mohebi, B., Chegini, A.H. ve Miri, A.R. (2019) A new damage index for steel MRFs based on incremental dynamic analysis, Journal of Constructional Steel Research, 156, 137-154. https://doi.org/10.1016/j.jcsr.2019.02.005
  • 28. Negro, P. (1997) Experimental assessment of the global cyclic damage of framed R/C structures, Journal of Earthquake Engineering, 1(3), 543-562. https://doi.org/10.1080/13632469708962377
  • 29. Park, Y.J. ve Ang, A.H.S. (1985) Mechanistic seismic damage model for reinforced, Journal of Structural Engineering, 111(4), 722-739. https://doi.org/10.1061/(asce)0733-9445(1985)111:4(722)
  • 30. Park, Y.J., Ang, A.H.S. ve Wen, Y.K. (1987) Damage limiting aseismic design of buildings, Earthquake Spectra, 3(1), 1-26. https://doi.org/10.1193/1.1585416
  • 31. PEER NGA, Pacific Earthquake Engineering Research Center, Ground Motion Database, https://ngawest2.berkeley.edu/
  • 32. Powell,G.H. ve Allahabadi, R. (1988) Seismic damage prediction by deterministic methods: concepts and procedures, Earthquake Engineering and Structural Dynamics, 16(5), 719-734. https://doi.org/10.1002/eqe.4290160507
  • 33. Priestley, M.J.N. (2000) Performance based seismic design, 12th World Conference on Earthquake Engineering, Auckland, New Zeland.
  • 34. Roufaiel, M.S.L. ve Meyer, C. (1987) Analytical modeling of hysteretic behavior of R/C frames, Journal of Structural Engineering, ASCE, 113(3), 429-457. https://doi.org/10.1061/(asce)0733-9445(1987)113:3(429)
  • 35. SeismoMatch (2018) SeismoSoft Earthquake Engineering Software Solutions.
  • 36. Stephens, J.E. ve Yao, J.T.P. (1987) Damage assessment using response measurement, Journal of Structural Engineering, ASCE, 113(4), 787-801. https://doi.org/10.1061/(asce)0733-9445(1987)113:4(787)
  • 37. TBDY (2018) Türkiye Bina Deprem Yönetmeliği, Çevre ve Şehircilik Bakanlığı, Ankara.
  • 38. TDY (1975) Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Ankara.
  • 39. Valles, R.E., Reinhorn, A.M. ve Barron R. (1996) Seismic evaluation of a low-rise RC building in the vicinity of the New Madrid Seismic Zone, Report No. NCEER 95, National Center for Earthquake Engineering and Research, Buffalo.
  • 40. Wang, M.L. ve Shah, S.P. (1987) Reinforced concrete hysteresis model based in the damage concept, Earthquake Engineering and Structural Dynamics, 15(8), 993-1003. https://doi.org/10.1002/eqe.4290150806
  • 41. Zahrah, T.F. ve Hall, W.J. (1984) Earthquake energy absorption in SDOF structures, Journal of Structural Engineering, 110(8), 1757-1772. https://doi.org/10.1061/(asce)0733-9445(1984)110:8(1757)
  • 42. Zhang, C. ve Tian, Y. (2019) Simplified performance-based optimal seismic design of reinforced concrete buildings, Engineering Structures, 185, 15-25. https://doi.org/10.1016/j.engstruct.2019.01.108

Determination of the Effect of Modern-Day Designing Methods on Seismic Performance of RC Buildings by using Park-Ang Damage Index

Year 2020, Volume: 25 Issue: 1, 325 - 340, 30.04.2020
https://doi.org/10.17482/uumfd.649454

Abstract

It is known that most of building stock in Turkey may suffer severe damage or collapse due to strong earthquakes. Thus, reliable methods should be used in earthquake resistant design or in the performance evaluation of existing buildings. Deformation-based design approach is becoming widespread and is almost made compulsory by earthquake regulations in determination of earthquake reliability. Turkish Seismic Code for Buildings (TSCB) 2018 suggests material strains and/or plastic rotations as damage limit in performance-based design. However, as it is known, earthquake is a cyclic load and the damped energy and consequently the accumulated damage change depending on the number of cycles. Damage index methods, which take into account displacement ductility and the cumulative damage, are effective in the estimation of the damage level. In this study, the seismic performance of an existing reinforced concrete school building designed and built in accordance with the Turkish Seismic Code of 1975 and the seismic performance of the same building, which is designed according to TSCB 2018 were investigated using the Park-Ang Damage Index. Non-linear time history analyses were performed for the buildings whose analytical models were prepared via IDARC computer program and seismic performance were obtained by considering damage indices.

References

  • 1. Ang, A.H-S., Kim, W.J. ve Kim, S.B. (1993) Damage estimation of existing bridge structures, Structural Engineering in Natural Hazards Mitigation: Proc. ASCE Structures Congress, Irvine CA, (2) 1137-1142.
  • 2. ATC40, (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, California.
  • 3. Banon, H., Biggs, J.M., ve Irvine, H.M. (1980) Prediction of seismic damage in reinforced concrete frames”, Seismic Behavior and Design of Buildings, Report No. 3, MIT, Cambridge, Mass, May.
  • 4. Banon, H., Biggs, J.M., ve Irvine, H.M. (1981) Seismic damage in reinforced concrete frames, Journal of Structrual Engineering, ASCE, 107(9), 1713-1729.
  • 5. Börekçi, M., Kırçıl, M.S. ve Ekiz, İ. (2018) Inelastic displacement ratios for evaluation of degrading peak-oriented SDOF systems, Periodica Polytechnica Civil Engineering, 62(1), 33-47. https://doi.org/10.3311/PPci.10635
  • 6. Carr, A.J. ve Tabuchi, M. (1993) The structural ductility and the damage index for reinforced concrete structure under seismic excitation, 2nd European conference on Structural Dynamics, Trondheim, Norway, Haziran
  • 7. Chopra, A.K. (2000) Dynamics of Structures: Theory and Applications to Earthquake Engineering, Second Edition, Prentice Hall, New Jersey.
  • 8. Chung, Y.S., Meyer, C. ve Shinozuka, M. (1989) Modeling of concrete damage, ACI Structural Journal, 86(3), 259-271. https://doi.org/10.14359/2895
  • 9. Cosenza, E., Manfredi, G. ve Ramasco, R. (1993) The use of damage functionals in earthquake engineering: a comparison between different models, Earthquake Engineering and Structural Dynamics, 22(10), 855-868. https://doi.org/10.1002/eqe.4290221003
  • 10. Diaz, S.A., Pujades, L.G., Barbat, A.H., Vargas, Y.F. ve Hidalgo-Leiva, D.A. (2017) Energy damage index based on capacity and response spectra, Engineering Structures, 152, 424-436. https://doi.org/10.1016/j.engstruct.2017.09.019
  • 11. EC 8 (2011) Euro Code 8, Seismic Design of Buildings, European Commission Joint Research Centre, Italy.
  • 12. Fahjan, Y.M. (2008) Türkiye Deprem Yönetmeliği (DBYBHY, 2007) tasarım ivme spektrumuna uygun gerçek deprem kayıtlarının seçilmesi ve ölçeklenmesi, Teknik Dergi, 19(3), 4423-4444.
  • 13. Fajfar, P. (1992) Equivalent ductility factors, taking into account low-cycle fatigue, Earthquake Engineering and Structural Dynamics, 21(10), 837-848. https://doi.org/10.1002/eqe.4290211001
  • 14. Fajfar, P., ve Krawinkler, H. (1997) Seismic design methodologies for the next generation of codes, Proceedings of International Workshop held in Bled, Balkema, The Netherlands. https://doi.org/10.1201/9780203740019
  • 15. FEMA 356 (1997) Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington.
  • 16. Ghobarah, A., Abou-Elfath, H. ve Biddah, A. (1999) Response-based damage assessment of structures, Earthquake Engineering and Structural Dynamics, 28(1), 79-104.
  • 17. Ghosh, S. ve Collins, K.R. (2006) Merging energy-based design criteria and reliability-based methods: exploring a new concept, Earthquake Engineering and Structural Dynamics, 35(13), 1677-1698. https://doi.org/10.1002/eqe.602
  • 18. Ghosh, S., Datta, D. ve Katakdhond, A.A. (2011) Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems, Engineering Structures, 33(9), 2509-2524. https://doi.org/10.1016/j.engstruct.2011.04.023
  • 19. Hwang, T.H. ve Scribner, C.F. (1984) R/C member cyclic response during various loadings, Journal of Structural Engineering, ASCE, 110(3), 477-489. https://doi.org/10.1061/(asce)0733-9445(1984)110:3(477)
  • 20. IDARC V6.1 (2006) A Computer Program for the Inelastic Damage Analysis of Buildings, NCEER, State University of New York at Buffalo.
  • 21. Jeong, G.D. ve Iwan, W.D. (1988) Effect of earthquake duration on damage of structures, Earthquake Engineering and Structural Dynamics, 16(8), 1201-1211. https://doi.org/10.1002/eqe.4290160808
  • 22. Katsanos, E.I., Sextos, A.G. ve Manolis, G.D. (2010) Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective, Soil Dynamics and Earthquake Engineering, 30(4), 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005
  • 23. Kent, D.C. ve Park, R. (1971) Flexural members with confined concrete, Journal of Structural Division, 97(ST7), 1969-1990.
  • 24. Kim, T.-H., Lee, K.-M., Chung, Y.-S. ve Shin H.M. (2005) Seismic damage assessment of reinforced concrete bridge columns, Engineering Structures, 27(4), 576-592.
  • 25. Kunnath, S.K., Reinhorn, A.M. ve Lobo, R.F. (1992) IDARCversion 3.0: A Computer Program for the Inelastic Damage Analysis of Reinforced Concrete Structures, Report No. NCEER 92-0022, National Center for Earthquake Engineering and Research, Buffalo.
  • 26. Kunnath, S.K. ve Jenne, C. (1994) Seismic damage assessment of inelastic RC structures, 5th US National Conference on Earthquake Engineering, Chicago, 1, 55-64, July.
  • 27. Mohebi, B., Chegini, A.H. ve Miri, A.R. (2019) A new damage index for steel MRFs based on incremental dynamic analysis, Journal of Constructional Steel Research, 156, 137-154. https://doi.org/10.1016/j.jcsr.2019.02.005
  • 28. Negro, P. (1997) Experimental assessment of the global cyclic damage of framed R/C structures, Journal of Earthquake Engineering, 1(3), 543-562. https://doi.org/10.1080/13632469708962377
  • 29. Park, Y.J. ve Ang, A.H.S. (1985) Mechanistic seismic damage model for reinforced, Journal of Structural Engineering, 111(4), 722-739. https://doi.org/10.1061/(asce)0733-9445(1985)111:4(722)
  • 30. Park, Y.J., Ang, A.H.S. ve Wen, Y.K. (1987) Damage limiting aseismic design of buildings, Earthquake Spectra, 3(1), 1-26. https://doi.org/10.1193/1.1585416
  • 31. PEER NGA, Pacific Earthquake Engineering Research Center, Ground Motion Database, https://ngawest2.berkeley.edu/
  • 32. Powell,G.H. ve Allahabadi, R. (1988) Seismic damage prediction by deterministic methods: concepts and procedures, Earthquake Engineering and Structural Dynamics, 16(5), 719-734. https://doi.org/10.1002/eqe.4290160507
  • 33. Priestley, M.J.N. (2000) Performance based seismic design, 12th World Conference on Earthquake Engineering, Auckland, New Zeland.
  • 34. Roufaiel, M.S.L. ve Meyer, C. (1987) Analytical modeling of hysteretic behavior of R/C frames, Journal of Structural Engineering, ASCE, 113(3), 429-457. https://doi.org/10.1061/(asce)0733-9445(1987)113:3(429)
  • 35. SeismoMatch (2018) SeismoSoft Earthquake Engineering Software Solutions.
  • 36. Stephens, J.E. ve Yao, J.T.P. (1987) Damage assessment using response measurement, Journal of Structural Engineering, ASCE, 113(4), 787-801. https://doi.org/10.1061/(asce)0733-9445(1987)113:4(787)
  • 37. TBDY (2018) Türkiye Bina Deprem Yönetmeliği, Çevre ve Şehircilik Bakanlığı, Ankara.
  • 38. TDY (1975) Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Ankara.
  • 39. Valles, R.E., Reinhorn, A.M. ve Barron R. (1996) Seismic evaluation of a low-rise RC building in the vicinity of the New Madrid Seismic Zone, Report No. NCEER 95, National Center for Earthquake Engineering and Research, Buffalo.
  • 40. Wang, M.L. ve Shah, S.P. (1987) Reinforced concrete hysteresis model based in the damage concept, Earthquake Engineering and Structural Dynamics, 15(8), 993-1003. https://doi.org/10.1002/eqe.4290150806
  • 41. Zahrah, T.F. ve Hall, W.J. (1984) Earthquake energy absorption in SDOF structures, Journal of Structural Engineering, 110(8), 1757-1772. https://doi.org/10.1061/(asce)0733-9445(1984)110:8(1757)
  • 42. Zhang, C. ve Tian, Y. (2019) Simplified performance-based optimal seismic design of reinforced concrete buildings, Engineering Structures, 185, 15-25. https://doi.org/10.1016/j.engstruct.2019.01.108
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Muzaffer Börekçi 0000-0002-8684-6159

Publication Date April 30, 2020
Submission Date November 21, 2019
Acceptance Date February 15, 2020
Published in Issue Year 2020 Volume: 25 Issue: 1

Cite

APA Börekçi, M. (2020). GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 325-340. https://doi.org/10.17482/uumfd.649454
AMA Börekçi M. GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ. UUJFE. April 2020;25(1):325-340. doi:10.17482/uumfd.649454
Chicago Börekçi, Muzaffer. “GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 1 (April 2020): 325-40. https://doi.org/10.17482/uumfd.649454.
EndNote Börekçi M (April 1, 2020) GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 325–340.
IEEE M. Börekçi, “GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ”, UUJFE, vol. 25, no. 1, pp. 325–340, 2020, doi: 10.17482/uumfd.649454.
ISNAD Börekçi, Muzaffer. “GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (April 2020), 325-340. https://doi.org/10.17482/uumfd.649454.
JAMA Börekçi M. GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ. UUJFE. 2020;25:325–340.
MLA Börekçi, Muzaffer. “GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 1, 2020, pp. 325-40, doi:10.17482/uumfd.649454.
Vancouver Börekçi M. GÜNÜMÜZ TASARIM YÖNTEMLERİNİN BETONARME BİNALARIN DEPREM PERFORMANSINA ETKİSİNİN PARK-ANG HASAR İNDEKSİ İLE BELİRLENMESİ. UUJFE. 2020;25(1):325-40.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.