Research Article
BibTex RIS Cite

SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ

Year 2020, Volume: 25 Issue: 3, 1459 - 1478, 31.12.2020
https://doi.org/10.17482/uumfd.750246

Abstract

Alümina; sert, kimyasal olarak inert, yüksek erime noktasına sahip, oksidasyona, korozyona, termal ve mekanik şoklara ve aşınmaya karşı yüksek direnç gösteren bir malzeme olduğu için başta seramik endüstrisi olmak üzere elektronik, kozmetik ve sağlık gibi pek çok endüstride geniş uygulama alanı bulmaktadır. Günümüzde, teknolojinin gelişmesiyle ve üretimin artmasıyla birlikte alüminanın kullanım alanları da her geçen yıl artış göstermektedir. Üstün fiziksel ve teknik özellikleri sebebiyle endüstriyel açıdan önemli bir mineral olan alümina, genellikle boksit cevherinden Bayer prosesi ile üretilmekte ve cevherden üretim nedeniyle de safsızlıklar barındırabilmesi önemli bir sorun teşkil etmektedir. Bu çalışmada, sol-jel yöntemiyle sentezlenen alümina kriyojelin 600-1300 oC aralığında farklı sıcaklıklarda kalsine edilmesiyle, endüstriyel alanda geniş bir kullanım alanına sahip alümina formuna dönüştürülmesi amaçlanmıştır. Elde edilen ürünlerin karakterizasyonu FT-IR, BET, SEM, XRD, TGA/DTA ve DSC analizleri ile yapılmış ve alüminanın fizikokimyasal özellikleri ile faz geçişleri incelenerek, kalsinasyon sıcaklığının son ürünün yapısal özellikleri üzerine etkisi belirlenmiştir.

Supporting Institution

Hitit Üniversitesi

Project Number

MUH19004.16.002

Thanks

Bu çalışma, Hitit Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir (Proje No: MUH19004.16.002). Ayrıca Ondokuz Mayıs Üniversitesi Kimya Mühendisliği Bölümü öğretim üyesi Prof. Dr. Yıldıray TOPCU’ ya, çalışma kapsamında gerçekleştirilen termogravimetrik analizlerde vermiş olduğu desteklerden dolayı teşekkür ederiz.

References

  • 1. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., Gusarov V.V. (2005) Preparation of nanocrystalline alumina under hydrothermal conditions, Inorganic Materials, 41(5), 460–467. doi:10.1007/s10789-005-0152-7
  • 2. Bai, P., Xing, W., Zhang, Z., Yan, Z. (2005) Facile synthesis of thermally stable mesoporous crystalline alumina by using a novel cation-anion double hydrolysis method, Materials Letters, 59, 3128–3131. doi:10.1016/j.matlet.2005.05.033
  • 3. Bono Jr., M.S., Anderson, A.M., Carroll, M.K. (2010) Alumina aerogels prepared via rapid supercritical extraction, Journal of Sol-Gel Science and Technology, 53, 216-226. doi: 10.1007/s10971-009-2080-5
  • 4. Brinker, C.J., Scherer, G.W. (1990) Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing, Academic Press Inc., New York. doi: 10.1016/C2009-0-22386-5
  • 5. Cantürk Öz, D. ve Kaya, N. (2020) Sol-jel yöntemiyle üretilen alümina alkojelin fizikokimyasal ve yapısal özellikleri üzerine kurutma türünün etkisi, Politeknik Dergisi, 23(3), 657-669. doi: 10.2339/politeknik.456871
  • 6. Çerezci, T. (2008) Nikel Partikül Takviyeli Alumina Seramik Kompozitlerin Sentezi ve Karakterizasyonu, Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • 7. Davis, K. (2010) Material review: Alumina (Al2O3), School of Doctoral Studies European Union Journal, 2, 109–114.
  • 8. Deng, S. (2006) Sorbent Technology, Encyclopedia of Chemical Processing, Taylor&Francis, Abingdon. doi: 10.1081/E-ECHP-120007963
  • 9. Diniz, C.F., Balzuweit, K., Mohallem, N.D.S. (2007) Alumina nanotubes: Preparation and textural, structural and morphological characterization, Journal of Nanoparticle Research, 9, 293–300. doi: 10.1007/s11051-005-9039-4
  • 10. Du, X., Su, X., Wang, Y., Li, J. (2009) Thermal decomposition of grinding activated bayerite, Materials Research Bulletin, 44, 660–665. doi: 10.1016/j.materresbull.2008.06.031
  • 11. Erdemoğlu, M., Birinci, M. ve Uysal, T. (2018) Kil minerallerinden alümina üretimi: Güncel değerlendirmeler, Politeknik Dergisi, 21(2), 387-396. doi: 10.2339/politeknik.386907
  • 12. He, F., Sui, C., He, X., Li, M. (2015) Facile synthesis of strong alumina-cellulose aerogels by a freeze-drying method, Materials Letters, 152, 9-12. doi: 10.1016/j.matlet.2015.03.058
  • 13. http://www.mta.gov.tr/v3.0/bilgimerkezi/boksit, Erişim Tarihi: 30.01.2020, Konu: Boksit Cevheri
  • 14. Huang, B., Bartholomew, C.H., Woodfield, B.F. (2014) Facile synthesis of mesoporous c-alumina with tunable pore size: the effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides, Microporous Mesoporous Mater., 183, 37–47. doi: 10.1016/j.micromeso.2013.09.007
  • 15. Keysar, S., Shter, G.E., De Hazan, Y., Cohen, Y., Grader, G.S. (1997) Heat treatment of alumina aerogels, Chemistry of Materials, 9, 2464–2467. doi: 10.1021/cm970208s
  • 16. Khosravi Mardkhe, M., Huang, B., Bartholomew, C.H., Alam, T.M., Woodfield, B.F. (2016) Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties, Journal of Porous Materials, 23, 475-487. doi: 10.1007/s10934-015-0101-z
  • 17. Kindl, B., Carlsson, D.J., Deslandes, Y., Hoddenbagh, J.M.A. (1991) Preparation of alumina ceramics : The use of boehmite sols as dispersing agents, Ceramics International, 17, 347–350. doi: 10.1016/0272-8842(91)90032-U
  • 18. Kumar, R., Prabhakar, V., Saini, J. (2013) Alumina, International Journal of Current Engineering and Technology, 3(5), 1679–1685.
  • 19. Kureti, S., Weisweiler, W. (2002) A new route for the synthesis of high surface area γ-aluminium oxide xerogel, Applied Catalysis A: General, 225, 251–259. doi: 10.1016/S0926-860X(01)00870-5
  • 20. Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi , G., Trelkat, J.F. (2017) Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(2), 47–54. doi: 10.1016/j.bsecv.2016.10.001
  • 21. Lee, G.W. (2013) Phase transition characteristics of flame-synthesized gamma-Al2O3 nanoparticles with heat treatment, Int. J. Chem. Nucl. Metall. Mater, 7(9), 699–702. doi: 10.5281/zenodo.1087982
  • 22. Livage, J., Sanchez, C., Henry, M., Doeuff, S. (1989) The chemistry of the sol-gel process, Solid State Ionics, 32–33, 633–638. doi: 10.1016/0167-2738(89)90338-X
  • 23. Masuda, T., Asoh, H., Haraguchi, S., Ono, S. (2015) Fabrication and characterization of single phase α-alumina membranes with tunable pore diameters, Materials, 8, 1350–1368. doi: 10.3390/ma8031350
  • 24. Matori, K.A., Wah, L.C., Hashim, M., Ismail, I., Mohd Zaid, M.H. (2012) Phase transformations of α-alumina made from waste aluminum via a precipitation technique, International Journal of Molecular Sciences, 13, 16812–16821. doi: 10.3390/ijms131216812
  • 25. Noordin, M.R., Liew, K.Y. (2010) RFID Technology, Security Vulnerabilities, and Countermeasures, Synthesis of Alumina Nanofibers and Composites, InTech Published, Croatian. doi: 10.5772/6668
  • 26. Padmaja, P., Pillai, P.K., Warrier, K.G.K., Padmanabhan, M. (2004) Adsorption isotherm and pore characteristics of nano alumina derived from sol-gel boehmite, Journal of Porous Materials, 11, 147–155. doi: 10.1023/B:JOPO.0000038010.54859.2f
  • 27. Piriyawong, V., Thongpool, V., Asanithi, P., Limsuwan, P. (2012) Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, Journal of Nanomaterials, 2012, 1–7. doi: 10.1155/2012/819403
  • 28. Poco, J.F., Satcher, J.H., Hrubesh, L.W. (2001) Synthesis of high porosity, monolithic alumina aerogels, Journal of Non-Crystalline Solids, 285(1-3), 57-63. doi: 10.1016/S0022-3093(01)00432-X
  • 29. Rajaeiyan, A., Bagheri-Mohagheghi, M.M. (2013) Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles, Advances in Manufacturing, 1, 176–182. doi: 10.1007/s40436-013-0018-1
  • 30. Santos, P.S., Santos, H.S., Toledo, S.P. (2000) Standard transition aluminas: Electron microscopy studies, Materials Research, 3(4), 104–114. doi: 10.1590/S1516-14392000000400003
  • 31. Schaper, H., Van Reijen, L.L. (1984) A quantitative investigation of the phase transformation of gamma to alpha alumina with high temperature DTA, Thermochimica Acta, 77, 383-393. doi: 10.1016/0040-6031(84)87077-X
  • 32. Schneider, M., Baiker, A. (1995) Aerogels in catalysis, Catalysis Reviews, 37(4), 515–556. doi: 10.1080/01614949508006450
  • 33. Shen, S.C., Ng, W.K., Chen, Q., Zeng, X.T., Tan, R.B.H. (2007) Novel synthesis of lace-like nanoribbons of boehmite and γ-alumina by dry gel conversion method, Materials Letters, 61, 4280–4282. doi: 10.1016/j.matlet.2007.01.085
  • 34. Siahpoosh, S.M., Salahi, E., Hessari, F.A., Mobasherpour, I. (2017) Facile synthesis of γ-alumina nanoparticles via the sol-gel method in presence of various solvents, Sigma Journal of Engineering and Natural Sciences, 35(3), 441-456.
  • 35. Simon-Herrero, C., Caminero-Huertas, S., Romero, A., Valverde, J.L., Sanchez-Silva, L. (2016) Effects of freeze-drying conditions on aerogel properties, J. Mater. Sci., 51, 8977-8985. doi: 10.1007/s10853-016-0148-5
  • 36. Singh, R. (2012) Synthesis and Characterization of Hydroxyapatite, Yüksek Lisans Tezi, Thapar University School of Physics and Materials Science, Patiala.
  • 37. Sonmez, M.S., Kaplan, S.S., Altun, C., Acma, M.E. (2019) Production and characterization of alumina and steatite based ceramic insulators, Transactions of the Indian Ceramic Society, 78(3), 161-164. doi: 10.1080/0371750X.2019.1657954
  • 38. Tok, A.I.Y., Boey, F.Y.C., Zhao, X.L. (2006) Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis, Journal of Materials Processing Technology, 178, 270–273. doi: 10.1016/j.jmatprotec.2006.04.007
  • 39. Wilson, S.J., Stacey, M.H. (1981) The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies, Journal of Colloid and Interface Science, 82(2), 507–517. doi: 10.1016/0021-9797(81)90392-1
  • 40. Yoldas, B.E. (1975) Alumina gels that form porous transparent Al2O3, Journal of Materials Science, 10, 1856-1860. doi: 10.1007/BF00754473
  • 41. Zu, G., Shen, J., Wei, X., Ni, X., Zhang, Z., Wang, J., Liu, G. (2011) Preparation and characterization of monolithic alumina aerogels, Journal of Non-Crystalline Solids, 357, 2903-2906. doi: 10.1016/j.jnoncrysol.2011.03.031

Effect of Calcination Temperature on Physicochemical and Structural Properties of Alumina Produced by Sol-Gel Process

Year 2020, Volume: 25 Issue: 3, 1459 - 1478, 31.12.2020
https://doi.org/10.17482/uumfd.750246

Abstract

Alumina, as a smooth, chemically inert, high-melting material and highly resistant to oxidation, corrosion, thermal and mechanical shocks, and abrasion, it is widely used in many industries such as electronics, cosmetics, health, and particularly in the ceramics industry. Today, with the development of technology and the increase of production, alumina usage areas are increasing every year. Alumina, which is an important mineral in industry because of its superior physical and technical properties, is currently produced from bauxite ore with Bayer process and it is an important problem to be able to contain impurities due to production from ore. In this study, it was aimed to convert alumina cryogel, synthesized by sol-gel method, to alumina form which has a wide usage area by calcining at 600-1300 oC at different temperatures. The characterization of the obtained products was carried out by FT-IR, BET, SEM, XRD, TGA/DTA and DSC analyzes and the physicochemical properties and phase transitions of alumina were examined and the effect of the calcination temperature on the structural properties of the final product was determined.

Project Number

MUH19004.16.002

References

  • 1. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., Gusarov V.V. (2005) Preparation of nanocrystalline alumina under hydrothermal conditions, Inorganic Materials, 41(5), 460–467. doi:10.1007/s10789-005-0152-7
  • 2. Bai, P., Xing, W., Zhang, Z., Yan, Z. (2005) Facile synthesis of thermally stable mesoporous crystalline alumina by using a novel cation-anion double hydrolysis method, Materials Letters, 59, 3128–3131. doi:10.1016/j.matlet.2005.05.033
  • 3. Bono Jr., M.S., Anderson, A.M., Carroll, M.K. (2010) Alumina aerogels prepared via rapid supercritical extraction, Journal of Sol-Gel Science and Technology, 53, 216-226. doi: 10.1007/s10971-009-2080-5
  • 4. Brinker, C.J., Scherer, G.W. (1990) Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing, Academic Press Inc., New York. doi: 10.1016/C2009-0-22386-5
  • 5. Cantürk Öz, D. ve Kaya, N. (2020) Sol-jel yöntemiyle üretilen alümina alkojelin fizikokimyasal ve yapısal özellikleri üzerine kurutma türünün etkisi, Politeknik Dergisi, 23(3), 657-669. doi: 10.2339/politeknik.456871
  • 6. Çerezci, T. (2008) Nikel Partikül Takviyeli Alumina Seramik Kompozitlerin Sentezi ve Karakterizasyonu, Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya.
  • 7. Davis, K. (2010) Material review: Alumina (Al2O3), School of Doctoral Studies European Union Journal, 2, 109–114.
  • 8. Deng, S. (2006) Sorbent Technology, Encyclopedia of Chemical Processing, Taylor&Francis, Abingdon. doi: 10.1081/E-ECHP-120007963
  • 9. Diniz, C.F., Balzuweit, K., Mohallem, N.D.S. (2007) Alumina nanotubes: Preparation and textural, structural and morphological characterization, Journal of Nanoparticle Research, 9, 293–300. doi: 10.1007/s11051-005-9039-4
  • 10. Du, X., Su, X., Wang, Y., Li, J. (2009) Thermal decomposition of grinding activated bayerite, Materials Research Bulletin, 44, 660–665. doi: 10.1016/j.materresbull.2008.06.031
  • 11. Erdemoğlu, M., Birinci, M. ve Uysal, T. (2018) Kil minerallerinden alümina üretimi: Güncel değerlendirmeler, Politeknik Dergisi, 21(2), 387-396. doi: 10.2339/politeknik.386907
  • 12. He, F., Sui, C., He, X., Li, M. (2015) Facile synthesis of strong alumina-cellulose aerogels by a freeze-drying method, Materials Letters, 152, 9-12. doi: 10.1016/j.matlet.2015.03.058
  • 13. http://www.mta.gov.tr/v3.0/bilgimerkezi/boksit, Erişim Tarihi: 30.01.2020, Konu: Boksit Cevheri
  • 14. Huang, B., Bartholomew, C.H., Woodfield, B.F. (2014) Facile synthesis of mesoporous c-alumina with tunable pore size: the effects of water to aluminum molar ratio in hydrolysis of aluminum alkoxides, Microporous Mesoporous Mater., 183, 37–47. doi: 10.1016/j.micromeso.2013.09.007
  • 15. Keysar, S., Shter, G.E., De Hazan, Y., Cohen, Y., Grader, G.S. (1997) Heat treatment of alumina aerogels, Chemistry of Materials, 9, 2464–2467. doi: 10.1021/cm970208s
  • 16. Khosravi Mardkhe, M., Huang, B., Bartholomew, C.H., Alam, T.M., Woodfield, B.F. (2016) Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties, Journal of Porous Materials, 23, 475-487. doi: 10.1007/s10934-015-0101-z
  • 17. Kindl, B., Carlsson, D.J., Deslandes, Y., Hoddenbagh, J.M.A. (1991) Preparation of alumina ceramics : The use of boehmite sols as dispersing agents, Ceramics International, 17, 347–350. doi: 10.1016/0272-8842(91)90032-U
  • 18. Kumar, R., Prabhakar, V., Saini, J. (2013) Alumina, International Journal of Current Engineering and Technology, 3(5), 1679–1685.
  • 19. Kureti, S., Weisweiler, W. (2002) A new route for the synthesis of high surface area γ-aluminium oxide xerogel, Applied Catalysis A: General, 225, 251–259. doi: 10.1016/S0926-860X(01)00870-5
  • 20. Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi , G., Trelkat, J.F. (2017) Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(2), 47–54. doi: 10.1016/j.bsecv.2016.10.001
  • 21. Lee, G.W. (2013) Phase transition characteristics of flame-synthesized gamma-Al2O3 nanoparticles with heat treatment, Int. J. Chem. Nucl. Metall. Mater, 7(9), 699–702. doi: 10.5281/zenodo.1087982
  • 22. Livage, J., Sanchez, C., Henry, M., Doeuff, S. (1989) The chemistry of the sol-gel process, Solid State Ionics, 32–33, 633–638. doi: 10.1016/0167-2738(89)90338-X
  • 23. Masuda, T., Asoh, H., Haraguchi, S., Ono, S. (2015) Fabrication and characterization of single phase α-alumina membranes with tunable pore diameters, Materials, 8, 1350–1368. doi: 10.3390/ma8031350
  • 24. Matori, K.A., Wah, L.C., Hashim, M., Ismail, I., Mohd Zaid, M.H. (2012) Phase transformations of α-alumina made from waste aluminum via a precipitation technique, International Journal of Molecular Sciences, 13, 16812–16821. doi: 10.3390/ijms131216812
  • 25. Noordin, M.R., Liew, K.Y. (2010) RFID Technology, Security Vulnerabilities, and Countermeasures, Synthesis of Alumina Nanofibers and Composites, InTech Published, Croatian. doi: 10.5772/6668
  • 26. Padmaja, P., Pillai, P.K., Warrier, K.G.K., Padmanabhan, M. (2004) Adsorption isotherm and pore characteristics of nano alumina derived from sol-gel boehmite, Journal of Porous Materials, 11, 147–155. doi: 10.1023/B:JOPO.0000038010.54859.2f
  • 27. Piriyawong, V., Thongpool, V., Asanithi, P., Limsuwan, P. (2012) Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique, Journal of Nanomaterials, 2012, 1–7. doi: 10.1155/2012/819403
  • 28. Poco, J.F., Satcher, J.H., Hrubesh, L.W. (2001) Synthesis of high porosity, monolithic alumina aerogels, Journal of Non-Crystalline Solids, 285(1-3), 57-63. doi: 10.1016/S0022-3093(01)00432-X
  • 29. Rajaeiyan, A., Bagheri-Mohagheghi, M.M. (2013) Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles, Advances in Manufacturing, 1, 176–182. doi: 10.1007/s40436-013-0018-1
  • 30. Santos, P.S., Santos, H.S., Toledo, S.P. (2000) Standard transition aluminas: Electron microscopy studies, Materials Research, 3(4), 104–114. doi: 10.1590/S1516-14392000000400003
  • 31. Schaper, H., Van Reijen, L.L. (1984) A quantitative investigation of the phase transformation of gamma to alpha alumina with high temperature DTA, Thermochimica Acta, 77, 383-393. doi: 10.1016/0040-6031(84)87077-X
  • 32. Schneider, M., Baiker, A. (1995) Aerogels in catalysis, Catalysis Reviews, 37(4), 515–556. doi: 10.1080/01614949508006450
  • 33. Shen, S.C., Ng, W.K., Chen, Q., Zeng, X.T., Tan, R.B.H. (2007) Novel synthesis of lace-like nanoribbons of boehmite and γ-alumina by dry gel conversion method, Materials Letters, 61, 4280–4282. doi: 10.1016/j.matlet.2007.01.085
  • 34. Siahpoosh, S.M., Salahi, E., Hessari, F.A., Mobasherpour, I. (2017) Facile synthesis of γ-alumina nanoparticles via the sol-gel method in presence of various solvents, Sigma Journal of Engineering and Natural Sciences, 35(3), 441-456.
  • 35. Simon-Herrero, C., Caminero-Huertas, S., Romero, A., Valverde, J.L., Sanchez-Silva, L. (2016) Effects of freeze-drying conditions on aerogel properties, J. Mater. Sci., 51, 8977-8985. doi: 10.1007/s10853-016-0148-5
  • 36. Singh, R. (2012) Synthesis and Characterization of Hydroxyapatite, Yüksek Lisans Tezi, Thapar University School of Physics and Materials Science, Patiala.
  • 37. Sonmez, M.S., Kaplan, S.S., Altun, C., Acma, M.E. (2019) Production and characterization of alumina and steatite based ceramic insulators, Transactions of the Indian Ceramic Society, 78(3), 161-164. doi: 10.1080/0371750X.2019.1657954
  • 38. Tok, A.I.Y., Boey, F.Y.C., Zhao, X.L. (2006) Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis, Journal of Materials Processing Technology, 178, 270–273. doi: 10.1016/j.jmatprotec.2006.04.007
  • 39. Wilson, S.J., Stacey, M.H. (1981) The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies, Journal of Colloid and Interface Science, 82(2), 507–517. doi: 10.1016/0021-9797(81)90392-1
  • 40. Yoldas, B.E. (1975) Alumina gels that form porous transparent Al2O3, Journal of Materials Science, 10, 1856-1860. doi: 10.1007/BF00754473
  • 41. Zu, G., Shen, J., Wei, X., Ni, X., Zhang, Z., Wang, J., Liu, G. (2011) Preparation and characterization of monolithic alumina aerogels, Journal of Non-Crystalline Solids, 357, 2903-2906. doi: 10.1016/j.jnoncrysol.2011.03.031
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

Nihan Kaya 0000-0001-8676-6768

Dilek Cantürk Öz 0000-0002-1407-5631

Project Number MUH19004.16.002
Publication Date December 31, 2020
Submission Date June 9, 2020
Acceptance Date October 2, 2020
Published in Issue Year 2020 Volume: 25 Issue: 3

Cite

APA Kaya, N., & Cantürk Öz, D. (2020). SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1459-1478. https://doi.org/10.17482/uumfd.750246
AMA Kaya N, Cantürk Öz D. SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ. UUJFE. December 2020;25(3):1459-1478. doi:10.17482/uumfd.750246
Chicago Kaya, Nihan, and Dilek Cantürk Öz. “SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 3 (December 2020): 1459-78. https://doi.org/10.17482/uumfd.750246.
EndNote Kaya N, Cantürk Öz D (December 1, 2020) SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1459–1478.
IEEE N. Kaya and D. Cantürk Öz, “SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ”, UUJFE, vol. 25, no. 3, pp. 1459–1478, 2020, doi: 10.17482/uumfd.750246.
ISNAD Kaya, Nihan - Cantürk Öz, Dilek. “SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (December 2020), 1459-1478. https://doi.org/10.17482/uumfd.750246.
JAMA Kaya N, Cantürk Öz D. SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ. UUJFE. 2020;25:1459–1478.
MLA Kaya, Nihan and Dilek Cantürk Öz. “SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 3, 2020, pp. 1459-78, doi:10.17482/uumfd.750246.
Vancouver Kaya N, Cantürk Öz D. SOL-JEL YÖNTEMİYLE ÜRETİLEN ALÜMİNANIN FİZİKOKİMYASAL VE YAPISAL ÖZELLİKLERİ ÜZERİNE KALSİNASYON SICAKLIĞININ ETKİSİ. UUJFE. 2020;25(3):1459-78.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.