Araştırma Makalesi
BibTex RIS Kaynak Göster

CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS

Yıl 2020, Cilt: 25 Sayı: 3, 1431 - 1444, 31.12.2020
https://doi.org/10.17482/uumfd.754577

Öz

The electroencephalogram is a powerful tool for understanding the electrical activities of the brain. The automatic and accurate classification of extracranial and intracranial electroencephalogram signals are significant for the evaluation of epilepsy. Electroencephalogram signals contain significant characteristic information about epileptic brain waves. However, the electroencephalogram signals are easily disrupted by the artifacts polluting. This study proposed a clinical decision support system to extract significant epilepsy-related spectral features from the electroencephalogram signal. The artifact-free electroencephalogram signals features were obtained from the Kaiser window based on Finite Impulse Filter. The extracted features were modeled by the Artificial Neural Networks Back Propagation training algorithms which are Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient. The algorithms' classification performances were compared by the accuracy rates. The experiment results show that compared with the Artificial Neural Networks Back Propagation training algorithms, the performance of the Levenberg-Marquardt is better from the point of accuracy rate which achieves a satisfying classification accuracy of 83.01% for extracranial and intracranial electroencephalogram signals.

Destekleyen Kurum

The Scientific Technological Research Council of Turkey (TÜBİTAK)

Proje Numarası

118E682

Kaynakça

  • 1. Abhinaya, B. and Thanaraj, D.C.K.P. (2016) Feature extraction and selection of a combination of entropy features for real-time epilepsy detection, International Journal of Engineering and Computer Science, 5(4). doi: 10.18535/ijecs/v5i4.03
  • 2. Acharya, U.R., Sree, S.V., Alvin, A.P.C. and Suri, J.S. (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework, Expert Systems with Applications, 39(10), 9072–9078. doi: 10.1016/j.eswa.2012.02.040
  • 3. Alam, S.M. and Bhuiyan, M.I. (2013) Detection of seizure and epilepsy using higher order statistics in the EMD domain, IEEE Journal of Biomedical and Health Informatics, 17, 312–318. doi: 10.1109/JBHI.2012.2237409
  • 4. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David P. and Elger, C.E. (2001) Indications of nonlinear deterministic and finite-dimensional structures in, time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E, 64(6), 061907. doi: 10.1103/PhysRevE.64.061907
  • 5. Bayrak, S., Yucel, E. and Takci, H. (2019) Classification of extracranial and intracranial EEG signal by using finite impulse response filter through ensemble learning, 27th Signal Processing and Communications Applications Conference, Turkey, 1-4. doi: 10.1109/SIU.2019.8806334
  • 6. Bloomfield, P (2000) Fourier Analysis of Time Series: An Introduction, Wiley-Interscience, New York.
  • 7. Boonyakitanont, P., Lek-Uthai, A., Chomtho, K. and Songsiri, J. (2020) A review of feature extraction and performance evaluation in epileptic seizure detection using EEG, Biomedical Signal Processing and Control, 57, 101702. doi: 10.1016/j.bspc.2019.101702
  • 8. Brookner, E. (1991) Practical Phased-Array Antenna Systems, Artech House, Boston.
  • 9. Burden, F. and Winkler, D. (2008) Bayesian regularization of neural networks, Artificial neural networks, Humana Press, 23-42. doi: 10.1007/978-1-60327-101-1_3
  • 10. Carrara, W.G., Ronald M. M. and Ron S. G. (1995) Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston.
  • 11. D'Antona, G. and Ferrero, A. (2005) Digital Signal Processing for Measurement Systems: Theory and Applications, Springer Science & Business Media. doi: 10.1007/0-387-28666-7
  • 12. Deriche, M., Arafat, S., Al-Insaif, S. and Siddiqui, M. (2019) Eigenspace time frequency based features for accurate seizure detection from EEG data, IRBM, 40(2), 122–132. doi: 10.1016/j.irbm.2019.02.002
  • 13. Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing Society, eds (1979) Programs for Digital Signal Processing, IEEE Press, New York.
  • 14. Duque-Muñoz, L., Espinosa-Oviedo, J.J. and Castellanos-Dominguez, C.G. (2014) Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms, Biomedical Engineering Online, 13(1), 123. doi: 10.1186/1475-925X-13-123
  • 15. Gade, S. and Herlufsen, H. (1987) Use of weighting functions in DFT/FFT analysis, B&K Technical Review, 3.
  • 16. Gandhi, T., Panigrahi, B.K. and Anand, S.A. (2011) Comparative Study of Wavelet Families for Eeg Signal Classification, Neurocomputing, 74, 3051–3057. doi: 10.1016/j.neucom.2011.04.029
  • 17. Ghosh-Dastidar, S., Adeli, H. and Dadmehr, N. (2007) Mixed-band wavelet-chaosneural network methodology for epilepsy and epileptic seizure detection, IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551. doi: 10.1109/TBME.2007.891945
  • 18. Ghosh-Dastidar, S., Adeli, H. and Dadmehr, N. (2008) Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Transactions on Biomedical Engineering, 55(2), 512–518. doi: 10.1109/TBME.2007.905490
  • 19. Guler, I. and Ubeyli, E.D. (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, Journal of Neuroscience Methods, 148(2), 113–121. doi: 10.1016/j.jneumeth.2005.04.013
  • 20. Guler, I. and Ubeyli, E.D. (2007) Multiclass support vector machines for EEG-signals classification, IEEE Transactions on Information Technology in Biomedicine, 11(2), 117–126, doi: 10.1109/TITB.2006.879600
  • 21. Guo, L., Rivero, D., Seoane, J. and Pazos, A. (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks, In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 177–84. doi: 10.1145/1543834.1543860
  • 22. Guo, L., Rivero, D., Dorado, J., Rabuñal, J.R. and Pazos, A. (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks, Journal of Neuroscience Methods, 191, 101–109. doi: 10.1016/j.jneumeth.2010.05.020
  • 23. Ha, Y. H. and Pearce, J. A. (1989) A new window and comparison to standard Windows, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(2), 298-301. doi: 10.1109/29.21693
  • 24. Hansen, Eric W (2014) Fourier Transforms: Principles and Applications, John Wiley & Sons, New York.
  • 25. Harris, F. J. (1978) On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, 66(1), 51-83. doi: 10.1109/PROC.1978.10837
  • 26. Jain, Y.K. and Bhandare, S.K. (2011) Min max normalization based data perturbation method for privacy protection, International Journal of Computer & Communication Technology, 2(8), 45-50.
  • 27. Kannathal, N., Acharya, U., Lim, C. and Sadasivan, P. (2005) Characterization of EEG, A comparative study, Computer Methods and Programs in Biomedicine, 80(1), 17–23. doi: 10.1016/j.cmpb.2005.06.005
  • 28. Kumar, C.U. and Kamalraj, S. (2019) Ambient intelligence architecture of MRPM context based 12-tap further desensitized half band FIR filter for EEG signal, Journal of Ambient Intelligence and Humanized Computing, 1-8. doi: 10.1007/s12652-019-01237-x
  • 29. Leonard, J. and Kramer, M.A. (1990) Improvement of the backpropagation algorithm for training neural networks, Computers & Chemical Engineering, 14(3), 337-341. doi: 10.1016/0098-1354(90)87070-6
  • 30. Li, M., Chen, W. and Zhang, T. (2017) Automatic epileptic EEG detection using DT–CWT-based non-linear features, Biomedical Signal Processing and Control, 34, 114–125. doi: 10.1016/j.bspc.2017.01.010
  • 31. Li, M., Chen, W. and Zhang, T. (2017) Application of MODWT and log-normal distribution model for automatic epilepsy identification, Biocybernetics and Biomedical Engineering, 3(4), 679–689. doi: 10.1016/j.bbe.2017.08.003
  • 32. Moré, J.J. (1978) The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis, Springer, Berlin, Heidelberg.
  • 33. Møller, M.F. (1993) A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6(4), 525-533. doi: 10.1016/S0893-6080(05)80056-5
  • 34. Naghsh-Nilchi, A.R. and Aghashahi, M. (2010) Epilepsy seizure detection using Eigen-system spectral estimation and multiple layer perceptron neural network, Biomedical Signal Processing and Control, 5(2), 147–157. doi: 10.1016/j.bspc.2010.01.004
  • 35. Nicolaou, N. and Georgiou, J. (2012) Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines, Expert Systems with Applications, 39, 202–209. doi: 10.1016/j.eswa.2011.07.008
  • 36. Nigam, V. and Graupe, D. (2004) A neural-network-based detection of epilepsy, Neurological Research, 26(1), 55–60. doi: 10.1179/016164104773026534
  • 37. Nuttall, A. (1981) Some windows with very good sidelobe behavior, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84-91. doi: 10.1109/TASSP.1981.1163506
  • 38. Ocak, H. (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, Expert Systems with Applications, 36(2), 2027–2036. doi: 10.1016/j.eswa.2007.12.065
  • 39. Oppenheim, A. V., Buck, J. R. and Schafer, R. W. (2001) Discrete-time Signal Processing, Upper Saddle River, Prentice Hall.
  • 40. Percival, D. B. and Walden A. T. (1993) Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge.
  • 41. Polat, K. and Günes, S. (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Applied Mathematics and Computation, 187(2), 1017–1026. doi: 10.1016/j.amc.2006.09.022
  • 42. Rajagurua, H. and Prabhakar, S.K. (2017) Hilbert transform with elman backpropagation and multilayer perceptrons for epilepsy classification, Electronics, Communication and Aerospace Technology, 571-576. doi: 10.1109/ICECA.2017.8203601
  • 43. Ramoser, H., Muller-Gerking, J. and Pfurtscheller, G. (2000) Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, 8(4), 441-446. doi: 10.1109/86.895946
  • 44. Samiee, K., Kovács, P. and Gabbouj, M. (2015) Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform, IEEE Transactions on Biomedical Engineering, 62, 541–552. doi: 10.1109/TBME.2014.2360101
  • 45. Samli, R. and Yucel, E. (2015) Global robust stability analysis of uncertain neural networks with time varying delays, Neurocomputing, 167, 371-377. doi: 10.1016/j.neucom.2015.04.058
  • 46. Sharma, M., Pachori, R.B. and Acharya, U.R. (2017) A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension, Pattern Recognition Letters, 94, 172–179. doi: 10.1016/j.patrec.2017.03.023
  • 47. Shorvon, S. (2010) Handbook of Epilepsy Treatment, John Wiley & Sons, United States. doi:10.1002/9781444325201
  • 48. Srinivasan, V., Eswaran, C. and Sriraam, N. (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features, Journal of Medical Systems, 29(6), 647–660. doi: 10.1007/s10916-005-6133-1
  • 49. Subasi, A. (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, 32(4), 1084–1093. doi: 10.1016/j.eswa.2006.02.005
  • 50. Swami, P., Gandhi, T.K., Panigrahi, B.K., Tripathi, M. and Anand, S. (2016) A novel robust diagnostic model to detect seizures in electroencephalography, Expert Systems with Applications, 56, 116–130. doi: 10.1016/j.eswa.2016.02.040
  • 51. Tsipouras, M.G. (2019) Spectral information of EEG signals with respect to epilepsy classification, EURASIP Journal on Advances in Signal Processing, 10, 2019. doi: 10.1186/s13634-019-0606-8
  • 52. Wang, G., Deng, Z. and Choi, K.S. (2017) Detection of epilepsy with electroencephalogram using rule-based classifiers, Neurocomputing, 228, 283-290. doi: 10.1016/j.neucom.2016.09.080
  • 53. Wang, X., Gong, G. and Li, N. (2019) Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer, Sensors, 19, 2018. doi: 10.3390/s19020219
  • 54. Wieser, H.G. (2004) ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis, Epilepsia, 45(6), 695-714. doi: 10.1111/j.0013-9580.2004.09004.x
  • 55. Zhang, T., Chen, W. and Li, M. (2018) Fuzzy distribution entropy and its application in automated seizure detection technique, Biomedical Signal Processing and Control, 39, 360–377. doi: 10.1016/j.bspc.2017.08.013

Sonlu Dürtü Yanıtı Filtresi ve Yapay Sinir Ağları Eğitim Algoritmaları tabanlı Epileptik EEG Sinyalinin Sınıflandırılması

Yıl 2020, Cilt: 25 Sayı: 3, 1431 - 1444, 31.12.2020
https://doi.org/10.17482/uumfd.754577

Öz

Elektroansefalogram beyinin elektriksel aktivitelerini anlamak için güçlü bir araçtır. Ekstrakranial ve intrakranial elektroansefalogram sinyallerinin otomatik ve doğru sınıflandırılması epilepsinin değerlendirilmesi için önemlidir. Elektroansefalogram sinyali, epileptik beyin dalgası hakkında önemli karakteristik bilgi içermektedir. Fakat elektroansefalogram sinyali artefakt kirleticiler tarafından kolaylıkla bozulmaktadır. Bu çalışma, elektroansefalogram sinyalinden epilepsi hakkında önemli spektral özellikleri çıkarmak amacıyla klinik bir karar destek sistemi önermektedir. Artefakttan arındırılmış elektroansefalogram sinyal özellikleri, Kaiser penceresi tabanlı Sonlu Dürtü Yanıtı filtresinden elde edilmiştir. Yapay Sinir Ağları Geri Yayılım eğitim algoritmalarından Levenberg-Marquardt, Bayesian Düzenlenmesi ve Ölçekli Konjugat Gradyan algoritmalarına çıkarılan özellikler uygulanarak modellenmiştir. Algoritmaların sınıflandırma performansları doğruluk oranlarına göre karşılaştırılmıştır. Deneysel sonuçlar, Yapay Sinir Ağları Geri Yayılma eğitim algoritmaları ile yapılan deneyler karşılaştırıldığında, Levenberg-Marquardt algoritması ekstrakranial ve intrakranial elektroansefalogram sinyali için %83,01'lik tatmin edici bir sınıflandırma doğruluğu ile diğer algoritmalara göre daha iyi doğruluk oranı verdiğini gösterir.

Proje Numarası

118E682

Kaynakça

  • 1. Abhinaya, B. and Thanaraj, D.C.K.P. (2016) Feature extraction and selection of a combination of entropy features for real-time epilepsy detection, International Journal of Engineering and Computer Science, 5(4). doi: 10.18535/ijecs/v5i4.03
  • 2. Acharya, U.R., Sree, S.V., Alvin, A.P.C. and Suri, J.S. (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework, Expert Systems with Applications, 39(10), 9072–9078. doi: 10.1016/j.eswa.2012.02.040
  • 3. Alam, S.M. and Bhuiyan, M.I. (2013) Detection of seizure and epilepsy using higher order statistics in the EMD domain, IEEE Journal of Biomedical and Health Informatics, 17, 312–318. doi: 10.1109/JBHI.2012.2237409
  • 4. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David P. and Elger, C.E. (2001) Indications of nonlinear deterministic and finite-dimensional structures in, time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E, 64(6), 061907. doi: 10.1103/PhysRevE.64.061907
  • 5. Bayrak, S., Yucel, E. and Takci, H. (2019) Classification of extracranial and intracranial EEG signal by using finite impulse response filter through ensemble learning, 27th Signal Processing and Communications Applications Conference, Turkey, 1-4. doi: 10.1109/SIU.2019.8806334
  • 6. Bloomfield, P (2000) Fourier Analysis of Time Series: An Introduction, Wiley-Interscience, New York.
  • 7. Boonyakitanont, P., Lek-Uthai, A., Chomtho, K. and Songsiri, J. (2020) A review of feature extraction and performance evaluation in epileptic seizure detection using EEG, Biomedical Signal Processing and Control, 57, 101702. doi: 10.1016/j.bspc.2019.101702
  • 8. Brookner, E. (1991) Practical Phased-Array Antenna Systems, Artech House, Boston.
  • 9. Burden, F. and Winkler, D. (2008) Bayesian regularization of neural networks, Artificial neural networks, Humana Press, 23-42. doi: 10.1007/978-1-60327-101-1_3
  • 10. Carrara, W.G., Ronald M. M. and Ron S. G. (1995) Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston.
  • 11. D'Antona, G. and Ferrero, A. (2005) Digital Signal Processing for Measurement Systems: Theory and Applications, Springer Science & Business Media. doi: 10.1007/0-387-28666-7
  • 12. Deriche, M., Arafat, S., Al-Insaif, S. and Siddiqui, M. (2019) Eigenspace time frequency based features for accurate seizure detection from EEG data, IRBM, 40(2), 122–132. doi: 10.1016/j.irbm.2019.02.002
  • 13. Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing Society, eds (1979) Programs for Digital Signal Processing, IEEE Press, New York.
  • 14. Duque-Muñoz, L., Espinosa-Oviedo, J.J. and Castellanos-Dominguez, C.G. (2014) Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms, Biomedical Engineering Online, 13(1), 123. doi: 10.1186/1475-925X-13-123
  • 15. Gade, S. and Herlufsen, H. (1987) Use of weighting functions in DFT/FFT analysis, B&K Technical Review, 3.
  • 16. Gandhi, T., Panigrahi, B.K. and Anand, S.A. (2011) Comparative Study of Wavelet Families for Eeg Signal Classification, Neurocomputing, 74, 3051–3057. doi: 10.1016/j.neucom.2011.04.029
  • 17. Ghosh-Dastidar, S., Adeli, H. and Dadmehr, N. (2007) Mixed-band wavelet-chaosneural network methodology for epilepsy and epileptic seizure detection, IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551. doi: 10.1109/TBME.2007.891945
  • 18. Ghosh-Dastidar, S., Adeli, H. and Dadmehr, N. (2008) Principal component analysisenhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Transactions on Biomedical Engineering, 55(2), 512–518. doi: 10.1109/TBME.2007.905490
  • 19. Guler, I. and Ubeyli, E.D. (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, Journal of Neuroscience Methods, 148(2), 113–121. doi: 10.1016/j.jneumeth.2005.04.013
  • 20. Guler, I. and Ubeyli, E.D. (2007) Multiclass support vector machines for EEG-signals classification, IEEE Transactions on Information Technology in Biomedicine, 11(2), 117–126, doi: 10.1109/TITB.2006.879600
  • 21. Guo, L., Rivero, D., Seoane, J. and Pazos, A. (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks, In: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 177–84. doi: 10.1145/1543834.1543860
  • 22. Guo, L., Rivero, D., Dorado, J., Rabuñal, J.R. and Pazos, A. (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks, Journal of Neuroscience Methods, 191, 101–109. doi: 10.1016/j.jneumeth.2010.05.020
  • 23. Ha, Y. H. and Pearce, J. A. (1989) A new window and comparison to standard Windows, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(2), 298-301. doi: 10.1109/29.21693
  • 24. Hansen, Eric W (2014) Fourier Transforms: Principles and Applications, John Wiley & Sons, New York.
  • 25. Harris, F. J. (1978) On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, 66(1), 51-83. doi: 10.1109/PROC.1978.10837
  • 26. Jain, Y.K. and Bhandare, S.K. (2011) Min max normalization based data perturbation method for privacy protection, International Journal of Computer & Communication Technology, 2(8), 45-50.
  • 27. Kannathal, N., Acharya, U., Lim, C. and Sadasivan, P. (2005) Characterization of EEG, A comparative study, Computer Methods and Programs in Biomedicine, 80(1), 17–23. doi: 10.1016/j.cmpb.2005.06.005
  • 28. Kumar, C.U. and Kamalraj, S. (2019) Ambient intelligence architecture of MRPM context based 12-tap further desensitized half band FIR filter for EEG signal, Journal of Ambient Intelligence and Humanized Computing, 1-8. doi: 10.1007/s12652-019-01237-x
  • 29. Leonard, J. and Kramer, M.A. (1990) Improvement of the backpropagation algorithm for training neural networks, Computers & Chemical Engineering, 14(3), 337-341. doi: 10.1016/0098-1354(90)87070-6
  • 30. Li, M., Chen, W. and Zhang, T. (2017) Automatic epileptic EEG detection using DT–CWT-based non-linear features, Biomedical Signal Processing and Control, 34, 114–125. doi: 10.1016/j.bspc.2017.01.010
  • 31. Li, M., Chen, W. and Zhang, T. (2017) Application of MODWT and log-normal distribution model for automatic epilepsy identification, Biocybernetics and Biomedical Engineering, 3(4), 679–689. doi: 10.1016/j.bbe.2017.08.003
  • 32. Moré, J.J. (1978) The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis, Springer, Berlin, Heidelberg.
  • 33. Møller, M.F. (1993) A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6(4), 525-533. doi: 10.1016/S0893-6080(05)80056-5
  • 34. Naghsh-Nilchi, A.R. and Aghashahi, M. (2010) Epilepsy seizure detection using Eigen-system spectral estimation and multiple layer perceptron neural network, Biomedical Signal Processing and Control, 5(2), 147–157. doi: 10.1016/j.bspc.2010.01.004
  • 35. Nicolaou, N. and Georgiou, J. (2012) Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines, Expert Systems with Applications, 39, 202–209. doi: 10.1016/j.eswa.2011.07.008
  • 36. Nigam, V. and Graupe, D. (2004) A neural-network-based detection of epilepsy, Neurological Research, 26(1), 55–60. doi: 10.1179/016164104773026534
  • 37. Nuttall, A. (1981) Some windows with very good sidelobe behavior, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84-91. doi: 10.1109/TASSP.1981.1163506
  • 38. Ocak, H. (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, Expert Systems with Applications, 36(2), 2027–2036. doi: 10.1016/j.eswa.2007.12.065
  • 39. Oppenheim, A. V., Buck, J. R. and Schafer, R. W. (2001) Discrete-time Signal Processing, Upper Saddle River, Prentice Hall.
  • 40. Percival, D. B. and Walden A. T. (1993) Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge.
  • 41. Polat, K. and Günes, S. (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, Applied Mathematics and Computation, 187(2), 1017–1026. doi: 10.1016/j.amc.2006.09.022
  • 42. Rajagurua, H. and Prabhakar, S.K. (2017) Hilbert transform with elman backpropagation and multilayer perceptrons for epilepsy classification, Electronics, Communication and Aerospace Technology, 571-576. doi: 10.1109/ICECA.2017.8203601
  • 43. Ramoser, H., Muller-Gerking, J. and Pfurtscheller, G. (2000) Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, 8(4), 441-446. doi: 10.1109/86.895946
  • 44. Samiee, K., Kovács, P. and Gabbouj, M. (2015) Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform, IEEE Transactions on Biomedical Engineering, 62, 541–552. doi: 10.1109/TBME.2014.2360101
  • 45. Samli, R. and Yucel, E. (2015) Global robust stability analysis of uncertain neural networks with time varying delays, Neurocomputing, 167, 371-377. doi: 10.1016/j.neucom.2015.04.058
  • 46. Sharma, M., Pachori, R.B. and Acharya, U.R. (2017) A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension, Pattern Recognition Letters, 94, 172–179. doi: 10.1016/j.patrec.2017.03.023
  • 47. Shorvon, S. (2010) Handbook of Epilepsy Treatment, John Wiley & Sons, United States. doi:10.1002/9781444325201
  • 48. Srinivasan, V., Eswaran, C. and Sriraam, N. (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features, Journal of Medical Systems, 29(6), 647–660. doi: 10.1007/s10916-005-6133-1
  • 49. Subasi, A. (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, 32(4), 1084–1093. doi: 10.1016/j.eswa.2006.02.005
  • 50. Swami, P., Gandhi, T.K., Panigrahi, B.K., Tripathi, M. and Anand, S. (2016) A novel robust diagnostic model to detect seizures in electroencephalography, Expert Systems with Applications, 56, 116–130. doi: 10.1016/j.eswa.2016.02.040
  • 51. Tsipouras, M.G. (2019) Spectral information of EEG signals with respect to epilepsy classification, EURASIP Journal on Advances in Signal Processing, 10, 2019. doi: 10.1186/s13634-019-0606-8
  • 52. Wang, G., Deng, Z. and Choi, K.S. (2017) Detection of epilepsy with electroencephalogram using rule-based classifiers, Neurocomputing, 228, 283-290. doi: 10.1016/j.neucom.2016.09.080
  • 53. Wang, X., Gong, G. and Li, N. (2019) Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer, Sensors, 19, 2018. doi: 10.3390/s19020219
  • 54. Wieser, H.G. (2004) ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis, Epilepsia, 45(6), 695-714. doi: 10.1111/j.0013-9580.2004.09004.x
  • 55. Zhang, T., Chen, W. and Li, M. (2018) Fuzzy distribution entropy and its application in automated seizure detection technique, Biomedical Signal Processing and Control, 39, 360–377. doi: 10.1016/j.bspc.2017.08.013
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka
Bölüm Araştırma Makaleleri
Yazarlar

Şengül Bayrak 0000-0002-4114-4305

Eylem Yücel Demirel 0000-0003-1979-8860

Rüya Şamlı 0000-0002-8723-1228

Proje Numarası 118E682
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 18 Haziran 2020
Kabul Tarihi 20 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 3

Kaynak Göster

APA Bayrak, Ş., Yücel Demirel, E., & Şamlı, R. (2020). CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1431-1444. https://doi.org/10.17482/uumfd.754577
AMA Bayrak Ş, Yücel Demirel E, Şamlı R. CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS. UUJFE. Aralık 2020;25(3):1431-1444. doi:10.17482/uumfd.754577
Chicago Bayrak, Şengül, Eylem Yücel Demirel, ve Rüya Şamlı. “CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 3 (Aralık 2020): 1431-44. https://doi.org/10.17482/uumfd.754577.
EndNote Bayrak Ş, Yücel Demirel E, Şamlı R (01 Aralık 2020) CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1431–1444.
IEEE Ş. Bayrak, E. Yücel Demirel, ve R. Şamlı, “CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS”, UUJFE, c. 25, sy. 3, ss. 1431–1444, 2020, doi: 10.17482/uumfd.754577.
ISNAD Bayrak, Şengül vd. “CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (Aralık 2020), 1431-1444. https://doi.org/10.17482/uumfd.754577.
JAMA Bayrak Ş, Yücel Demirel E, Şamlı R. CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS. UUJFE. 2020;25:1431–1444.
MLA Bayrak, Şengül vd. “CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 3, 2020, ss. 1431-44, doi:10.17482/uumfd.754577.
Vancouver Bayrak Ş, Yücel Demirel E, Şamlı R. CLASSIFICATION OF EPILEPTIC EEG SIGNALS BASED ON FINITE IMPULSE RESPONSE FILTER AND ARTIFICIAL NEURAL NETWORKS TRAINING ALGORITHMS. UUJFE. 2020;25(3):1431-44.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr