Year 2020, Volume 25 , Issue 3, Pages 1139 - 1154 2020-12-31

PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK
Dağlık Havzalarda Uydu Kar Verisi ve Dalgacık Sinir Ağı Tabanlı Olasılıklı Akım Modelleme Yaklaşımı

Gökçen UYSAL [1] , Aynur SENSOY [2]


Streamflow prediction is often a challenging issue for snow dominated basins where proper in-situ snow data might be limited and the snow physics is highly complex. The main aim of this study is to propose an alternative modeling solution by considering both accessibility of the inputs and simplicity of the model structure. We propose Wavelet Neural Network (WNN) model approach which takes probabilistic snow cover area in order to produce probabilistic streamflow in the mountainous basins. For the sake of the accessibility of the input data, snow probability maps are produced from cloud-free images of MODIS. The WNN model is trained and tested with observed hydro-meteorological data. Also, MultiLayer Perceptron Model (MLP) is used as a benchmark model. The approach is tested in a snow-dominated headwater (in altitude from 1559 to 3508 m) of Murat River which has a great importance as being one of the main tributaries of Euphrates River. According to the results, the approach is capable of detecting snow distribution in the area of interest and WNN is promising to generate probabilistic streamflow predictions. 
Kar baskın havzalardaki akarsu akım tahminleri, uygun arazi kar verilerinin sınırlı oluşu ve kar fiziğinin oldukça karmaşık olması nedeniyle genellikle zorlayıcı bir konudur. Bu çalışmanın temel amacı hem girdilerin erişilebilirliğini hem de model yapısının basitliğini göz önünde bulundurarak alternatif bir modelleme çözümü önermektir. Önerilen Dalgacık Sinir Ağı (DSA) modeli yaklaşımı, nehir akımları üretmek için olasılıklı karla kaplı alanları girdi alarak dağlık havzalarda olasılıklı akım tahminleri üretebilmektedir. Girdi verilerinin erişilebilirliği adına, MODIS'in bulutsuz görüntülerinden kar olasılığı haritaları üretilmektedir. DSA modeli, gözlenmiş hidro-meteorolojik verilerle eğitilmiş ve test edilmiştir. Ayrıca, Çok-Katmanlı Perseptron Modeli (ÇKPM) de kıyaslama modeli olarak kullanılmıştır. Yaklaşım, Fırat Nehri'nin ana kolu olarak büyük önem taşıyan Murat Nehri'nin kar baskın üst havzasında (1559 ila 3508 m yükseklikte) test edilmiştir. Sonuçlara göre, DSA yaklaşımı ilgi alanındaki kar dağılımını tespit ederek olasılıklı akım tahminleri üretme imkânı sağlamaktadır.
  • 1. Adamowski, J., Chan, H.F. (2011) A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013
  • 2. Adeli, H., Jiang, X. (2006) Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102-111. doi: 10.1061/(ASCE)0733-9445(2006)132:1(102)
  • 3. Al-geelani, N.A., Piah, M.A.M., Shaddad, R.Q. (2012) Characterization of acoustic signals due to surface discharges on HV glass insulators using wavelet radial basis function neural networks, Applied Soft Computing, 12(4), 1239-1246. doi:10.1016/j.asoc.2011.12.018
  • 4. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000) Artificial neural networks in hydrology. I: Preliminary concepts, Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • 5. Chen, Y., Yang, B., Dong, J. (2006). Time-series prediction using a local linear wavelet neural network. Neurocomputing, 69(4-6), 449-465. doi:10.1016/j.neucom.2005.02.006
  • 6. Dale, M., Wicks, J., Mylne, K., Pappenberger, F., Laeger, S., Taylor, S. (2014) Probabilistic flood forecasting and decision-making: an innovative risk-based approach, Natural Hazards, 70(1), 159-172. doi:10.1007/s11069-012-0483-z
  • 7. Daliakopoulos, I.N., Tsanis, I.K. (2016) Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow, Hydrological Sciences Journal, 61(15), 2763-2774. doi:10.1080/02626667.2016.1154151
  • 8. Daubechies, I. (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.
  • 9. Jiang, X., Adeli, H. (2005) Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering, 131(10), 771-779. doi:10.1061/(ASCE)0733-947X(2005)131:10(771)
  • 10. Graf, R., Zhu, S., Sivakumar, B. (2019) Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 124115. doi:10.1016/j.jhydrol.2019.124115
  • 11. Fahimi, F., Yaseen, Z.M., El-shafie, A. (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review, Theoretical and Applied Climatology, 128(3-4), 875-903. doi: 10.1007/s00704-016-1735-8
  • 12. Finger, D., Vis, M., Huss, M., Seibert, J. (2015) The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments, Water Resources Research, 51(4), 1939–1958. doi:10.1002/2014WR015712
  • 13. Fundel, F., Zappa, M. (2011) Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts, Water Resources Research, 47(9), W09520. doi:10.1029/2010WR009996
  • 14. Hagan, M.T., Menhaj, M.B. (1994) Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697
  • 15. Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J. (2002) MODIS snow-cover products, Remote Sensing of Environment, 83(1-2), 181-194. doi:10.1016/S0034-4257(02)00095-0
  • 16. Hall, D.K., Riggs, G.A., Salomonson, V.V. (2006) MODIS snow and sea ice products. Editors: Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV. Earth Science Satellite Remote Sensing, 154-181, Springer-Verlag Press, Berlin, Heidelberg, Germany.
  • 17. Hall, D.K., Riggs, G.A. (2007) Accuracy assessment of the MODIS snow products, Hydrological Processes, 21(12), 1534-1547. doi:10.1002/hyp.6715
  • 18. Haykins, S. (2009) Neural Networks and Learning Machines. 3rd Ed., Pearson Prentice Hall USA.
  • 19. Jörg-Hess, S., Griessinger, N., Zappa, M. (2015) Probabilistic forecasts of snow water equivalent and runoff in mountainous areas, Journal of Hydrometeorology, 16(5), 2169-2186. doi:10.1175/JHM-D-14-0193.1
  • 20. Krajčí, P., Holko, L., Perdigão, R.A., Parajka, J. (2014) Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins, Journal of Hydrology, 519, 1769–1778. doi:10.1016/j.jhydrol.2014.08.064
  • 21. Maier, H.R., Dandy, G.C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environmental Modelling & Software, 15(1), 101-124. doi:10.1016/S1364-8152(99)00007-9
  • 22. Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P. (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003
  • 23. Pappenberger, F., Beven, K.J., Hunter, N.M., Bates, P.D., Gouweleeuw, B.T., Thielen, J., De Roo, A.P.J. (2005) Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrology & Earth System Sciences, 9, 381–393. doi:10.5194/hess-9-381-2005
  • 24. Parajka, J., Blöschl, G. (2008) The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models, Journal of Hydrology, 358(3-4), 240-258. doi:10.1016/j.jhydrol.2008.06.006
  • 25. Parisi, R., Di Claudio, E.D., Orlandi, G., Rao, B.D. (1996) A generalized learning paradigm exploiting the structure of feedforward neural networks, IEEE Transactions on Neural Networks, 7(6), 1450-1460. doi:10.1109/72.548172
  • 26. Ramos, M.H., van Andel, S.J., Pappenberger, F. (2013) Do probabilistic forecasts lead to better decisions?, Hydrology & Earth System Sciences, 17, 2219–2232. doi:10.5194/hess-17-2219-2013
  • 27. Ritter, A., Muñoz-Carpena, R. (2013) Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004
  • 28. Solomatine, D.P. (2002) Data-driven modelling: paradigm, methods, experiences, 5th International Conference on Hydroinformatics, 01-05 July, Cardiff, United Kingdom.
  • 29. Şensoy, A., Uysal, G. (2012) The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data, Water Resources Management, 26(12), 3415-3440. doi:10.1007/s11269-012-0079-0
  • 30. Şorman, A.A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü., Akyürek, Z. (2009) Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey, Hydrological Processes, 23(7), 1031-1040. doi:10.1002/hyp.7204
  • 31. Şorman, A.A., Uysal, G., Şensoy, A. (2019) Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin, Journal of Hydrology and Hydromechanics, 67(1), 82-92. doi:10.2478/johh-2018-0025
  • 32. Şorman, A.A., Yamankurt, E. (2011) Modified satellite products on snow covered area in upper Euphrates basin, Turkey, European Geosciences Union General Assembly 2011, 03 – 08 April, Vienna, Austria.
  • 33. Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, A.Ü. (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sensing of Environment, 97(2), 216-230. doi:10.1016/j.rse.2005.03.013
  • 34. Uysal, G., Şensoy, A., Şorman, A.A. (2016) Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products, Journal of Hydrology, 543, 630-650. doi:10.1016/j.jhydrol.2016.10.037
  • 35. Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schär, C. (2007) Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies, Journal of Hydrometeorology, 8(4), 897-909. doi:0.1175/JHM594.1
  • 36. World Meteorological Organization (2008) Guide to Hydrological Practices. Volume I: Hydrology–From Measurement to Hydrological Information, WMO-No. 168, Geneva, Switzerland.
  • 37. Zhao, Y., Taylor, J.S., Chellam, S. (2005) Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, Journal of Membrane Science, 263(1-2), 38-46. doi:10.1016/j.memsci.2005.04.004
Primary Language en
Subjects Civil Engineering
Journal Section Research Articles
Authors

Orcid: 0000-0003-0445-060X
Author: Gökçen UYSAL (Primary Author)
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Orcid: 0000-0003-3004-4912
Author: Aynur SENSOY
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Supporting Institution TÜBİTAK
Project Number 113Y075
Thanks This study was partly funded by TÜBİTAK (The Scientific and Technical Research Council of Turkey) (Project No: 113Y075). The authors wish to thank General Directorate of Meteorology (MGM) and State Hydraulic Works (DSI) for data contribution.
Dates

Application Date : August 28, 2020
Acceptance Date : November 12, 2020
Publication Date : December 31, 2020

Bibtex @research article { uumfd787147, journal = {Uludağ University Journal of The Faculty of Engineering}, issn = {2148-4147}, eissn = {2148-4155}, address = {}, publisher = {Bursa Uludağ University}, year = {2020}, volume = {25}, pages = {1139 - 1154}, doi = {10.17482/uumfd.787147}, title = {PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK}, key = {cite}, author = {Uysal, Gökçen and Sensoy, Aynur} }
APA Uysal, G , Sensoy, A . (2020). PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK . Uludağ University Journal of The Faculty of Engineering , 25 (3) , 1139-1154 . DOI: 10.17482/uumfd.787147
MLA Uysal, G , Sensoy, A . "PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK" . Uludağ University Journal of The Faculty of Engineering 25 (2020 ): 1139-1154 <https://dergipark.org.tr/en/pub/uumfd/issue/57911/787147>
Chicago Uysal, G , Sensoy, A . "PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK". Uludağ University Journal of The Faculty of Engineering 25 (2020 ): 1139-1154
RIS TY - JOUR T1 - PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK AU - Gökçen Uysal , Aynur Sensoy Y1 - 2020 PY - 2020 N1 - doi: 10.17482/uumfd.787147 DO - 10.17482/uumfd.787147 T2 - Uludağ University Journal of The Faculty of Engineering JF - Journal JO - JOR SP - 1139 EP - 1154 VL - 25 IS - 3 SN - 2148-4147-2148-4155 M3 - doi: 10.17482/uumfd.787147 UR - https://doi.org/10.17482/uumfd.787147 Y2 - 2020 ER -
EndNote %0 Uludağ University Journal of The Faculty of Engineering PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK %A Gökçen Uysal , Aynur Sensoy %T PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK %D 2020 %J Uludağ University Journal of The Faculty of Engineering %P 2148-4147-2148-4155 %V 25 %N 3 %R doi: 10.17482/uumfd.787147 %U 10.17482/uumfd.787147
ISNAD Uysal, Gökçen , Sensoy, Aynur . "PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK". Uludağ University Journal of The Faculty of Engineering 25 / 3 (December 2020): 1139-1154 . https://doi.org/10.17482/uumfd.787147
AMA Uysal G , Sensoy A . PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. UUJFE. 2020; 25(3): 1139-1154.
Vancouver Uysal G , Sensoy A . PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. Uludağ University Journal of The Faculty of Engineering. 2020; 25(3): 1139-1154.
IEEE G. Uysal and A. Sensoy , "PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK", Uludağ University Journal of The Faculty of Engineering, vol. 25, no. 3, pp. 1139-1154, Dec. 2021, doi:10.17482/uumfd.787147