In this article, the research results for optimizing the maximum energy gain are shared by adapting the time plan of Metro Istanbul vehicles. Regenerative energy recovery is based on the principle that energy produced by the trains which make electromagnetic brake is transferred to the other trains that are ready to move. One of the ways to re-energize is to arrange the waiting times of the trains at the stations and to realize the time-plan optimization. Genetic algorithm was used to find station dwell times. Genetic algorithms are search and optimization methods that work similarly to the evolutionary process. This method is based on seeking the best solution according to the principle of survival of the best in multidimensional and complex space. At the end of each repetition, several of the best elite individuals were transferred to the next generation. For each repetition, the number of society individuals has been kept constant, while other individuals have been formed by crossing elite individuals or producing them randomly. Aggressive mutation was applied in cases where the change in station waiting times was not equal to zero. Result in of the simulation, around 26% better results compared to the reference study was obtained.
Bu makalede, Metro İstanbul araçlarından zaman planı uyarlanarak maksimum enerji kazanımının optimize edilmesine yönelik araştırma sonuçları paylaşılmıştır. Yeniden enerji kazanımı (rejeneratif enerji), elektromanyetik frenleme yapan trenlerin ürettiği enerjiyi hatta hareket etmeye hazır durumunda bulunan diğer trenlere aktarması prensibine dayanmaktadır. Yeniden enerji kazanımı elde etmenin en etkili yollarından birisi, trenlerin istasyonlarda bekleme sürelerinde düzenleme yaparak zaman-planı en iyileştirmesinin gerçekleştirilmesidir. Bu oldukça karışık ve elle yapılması mümkün olmayan bir NP problemi olduğundan bu çalışmada bekleme sürelerini bulmak için genetik algoritma kullanılmıştır. Genetik algoritmalar, evrimsel sürece benzer şekilde çalışan arama ve en iyileştirme yöntemidir. Bu yöntem çok boyutlu ve karmaşık uzayda en iyinin hayatta kalması ilkesine göre en iyi çözümü aramaya dayanır. Her tekrar sonunda en iyi birkaç elit birey bir sonraki nesle aktarılmıştır. Her tekrarda toplam birey sayısı sabit tutulmuş, diğer bireyler ise elit bireylerin çaprazlanması sonucu veya rastgele üretilmesiyle oluşturulmuştur. Agresif mutasyon işlemi, istasyon bekleme sürelerindeki değişimin sıfıra eşit olmadığı durumlarda uygulanmıştır. Yapılan simülasyon sonucunda, genetik algoritma ile elde edilen yeni bekleme süreleriyle trenlerin hızlanma ve frenleme anlarındaki örtüşme, referans çalışmaya göre %26 civarında daha iyi sonuçlar elde edilmiştir. Referans çalışmada %60 oranında olan trenlerin örtüşme anları bu çalışma ile %76 ‘ya kadar çıkartılmıştır.
Birincil Dil | Türkçe |
---|---|
Konular | Yapay Zeka |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2021 |
Gönderilme Tarihi | 11 Şubat 2020 |
Kabul Tarihi | 11 Şubat 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 26 Sayı: 1 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr