Research Article
BibTex RIS Cite

KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ

Year 2021, Volume: 26 Issue: 2, 649 - 660, 31.08.2021
https://doi.org/10.17482/uumfd.897340

Abstract

Bu çalışmada Konya ili atmosferik şartlarında güneş enerjisi destekli jeotermal kaynaklı Organik Rankine Çevrimi (ORÇ) sisteminin termodinamik analizi yapılmıştır. Sistemde iş akışkanı olarak R141b seçilmiştir. Jeotermal enerji kaynağı 50°C olarak belirlenmiştir. Sistem gündüz şartlarında güneş enerjisi ile desteklenmektedir. Birim jeotermal akışkan debisi (mj=1kg/sn) için sistemin elektrik üretimi, enerji ve ekserji verimleri saatlik, aylık ve yıllık peryotlar için belirlenmiştir. Sistem elemanlarının ekserji yıkım değerleri ve yüzdeleri yıllık verilere göre belirlenmiştir. Sistemden birim jeotermal akışkan debisi için yıllık elektrik üretimi 3711 kWh olarak hesaplanmıştır. Güneş enerjisi ve jeotermal enerjinin yıllık elektrik üretimine katkısı sırasıyla %5,3 ve %94,7 olarak belirlenmiştir. Sistemin enerji verimi saatlik, aylık ve yıllık peryotlar için %4,3 olarak belirlenmiştir. Sistemin yıllık ekserji verimi %6,1 olarak belirlenmiştir. Sistemin yıllık ekserji yıkım oranları güneş kolektörlerinde %60,2, kondenserde %16,3 evaporatörde %13,1, türbinde %11,3, ısı değiştiricide %0,6 ve çevrim pompasında %0,3 olarak elde edilmiştir.

References

  • Akkurt, F. (2020) Düşük Sıcaklıkta Jeotermal Enerji Kaynaklı Organik Rankine Çevrimi Sisteminin Enerji Ve Ekserji Analizi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 730-741. doi: 10.17482/uumfd.624475
  • Algieri, A. ve Sebo, J. (2017) Energetic Investigation of Organic Rankine Cycles (ORÇs) for the Exploitation of Low-Temperature Geothermal Sources – A possible application in Slovakia, Procedia Computer Science , 109, 833–840. doi 10.1016/j.procs.2017.05.348.
  • Anonim, 2020. Konya İli Jeotermal Enerji Potansiyelinin Turizm Amaçlı Değerlendirilmesi ve Yatırım Olanakları, Maden Tetkik ve Arama Genel Müdürlüğü, Mayıs
  • Atiz, A., Karakılcık, H., Erden, M. ve Karakılcık, M. (2019). Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy, Energy Conversion and Management, 195: 798–809. doi: 10.1016/j.enconman.2019.05.056
  • Astolfi, M., Xodo, L., Romano, M.C. ve Macchi, E. (2010) Technical and economical analysis of a solar–geothermal hybrid plant based on an Organic Rankine Cycle, Geothermics, 40: 58–68. doi: 10.1016/j.geothermics.2010.09.009
  • https://ec.europa.eu/jrc/en/pvgis Erişim Tarihi: 29.09.2020, Konu: Konya ili şartlarında eğimli kolektöre gelen radyasyon değerleri
  • https://ORC-world-map.org Erişim Tarihi: 29.03.2019, Konu: Dünya’da kurulu ORÇ sistemlerinin harita üzerinde gösterilmesi.
  • Bianchi, M., Branchini, L., De Pascale, A., Melino, F., Ottaviano, S., Torricelli, N. ve Zampieri, G. (2018) Performance and operation of micro-ORC energy system using geothermal heat source, Energy Procedia, 148, 384-391. doi:10.1016/j.egypro.2018.08.099.
  • Çakıcı, D.M., Erdogan, A. ve Colpan, C.Ö. (2017) Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors, Energy, 120: 306-319. doi:10.1016/j.energy.2016.11.083
  • Cardemil, J.M., Cortés, F., Díaz, A. ve Escobar, R. (2016) Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile, Energy Conversion and Management, 123, 348–361 doi: 10.1016/j.enconman.2016.06.032
  • Lentz, A. ve Almanza, R. (2005) Solar-geothermal hybrid system, Appl Therm Eng, 26, 1537–44. doi:10.1016/j.applthermaleng.2005.12.008
  • Kılıç, F. (2016) Geothermal Energy in Turkey. Energy & Envıronment, 27: 360-376. doi: 10.1177/0958305X15627544
  • Mir I., Rodrigo, R., Vergara, J. ve Bertrand, J.( 2011) Performance Analysis of a Hybrid Solar-Geothermal Power Plant in Northern Chile, World renewable energy congress, Linköpink,Sweden, 1281-1288
  • Pridasawas, W ve Lundqvist, P. (2006) A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant, International Journal of Refrigeration, 30: 840-850. doi: 10.1016/j.ijrefrig.2006.11.012
  • Petela, R. (1964) Exergy of heat radiation, ASME J. Heat Transfer, 86:187–192.
  • Shengjun, Z., Huaixin, W. ve Tao, G. (2011) Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Applied Energy, 88, 2740–2754. doi:10.1016/j.apenergy.2011.02.034
  • Tchanche, B.F., Lambrinos, Gr., Frangoudakis , A. ve Papadakis, G. (2009) Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Applied Energy, 87, 1295–1306. doi:10.1016/j.apenergy.2009.07.011.
  • Tempesti, D., Manfrida, G. ve Fiaschi D. (2012) Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy. Applied Energy, 97, 609-617 doi: 10.1016/j.apenergy.2012.02.012
  • Zhou C. (2014) Hybridisation of solar and geothermal energy in both subcriticaland supercritical Organic Rankine Cycles, Energy Conversion and Management, 81,72–82 doi: 10.1016/j.enconman.2014.02.007

Thermodynamic Analysis of Solar Assisted Geothermal Organic Rankine Cycle System in Atmospheric Conditions of Konya Province

Year 2021, Volume: 26 Issue: 2, 649 - 660, 31.08.2021
https://doi.org/10.17482/uumfd.897340

Abstract

In this study, the thermodynamic analysis of the solar energy assisted geothermal Organic Rankine Cycle (ORC) system was made under the atmospheric conditions of Konya. R141b was considered as the work fluid in the system. The geothermal energy source is determined as 50°C. The system was supported by solar energy in daytime conditions. The energy production, first law and exergy efficiency of the system for unit geothermal fluid flow rate (mj=1kg/sec) were determined for hourly, monthly and annual periods. Exergy destruction values and percentages of the system elements were determined for the annual period. Annual electricity production was obtained 3711 kWh for unit geothermal fluid flow rate. The contribution of solar energy and geothermal energy to annual electricity generation has been determined as 5.3% and 94.7%, respectively. The first law efficiency of the system has been determined as 4.3% for daily, monthly and annual periods. The annual exergy efficiency of the system has been determined as 6.1%. The annual exergy destruction rates of the system were obtained as 60.2% in solar collectors, 16.3% in the condenser, 13.1% in the evaporator, 11.3% in the turbine, 0.6% in the heat exchanger and 0.3% in the cycle pump.

References

  • Akkurt, F. (2020) Düşük Sıcaklıkta Jeotermal Enerji Kaynaklı Organik Rankine Çevrimi Sisteminin Enerji Ve Ekserji Analizi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 730-741. doi: 10.17482/uumfd.624475
  • Algieri, A. ve Sebo, J. (2017) Energetic Investigation of Organic Rankine Cycles (ORÇs) for the Exploitation of Low-Temperature Geothermal Sources – A possible application in Slovakia, Procedia Computer Science , 109, 833–840. doi 10.1016/j.procs.2017.05.348.
  • Anonim, 2020. Konya İli Jeotermal Enerji Potansiyelinin Turizm Amaçlı Değerlendirilmesi ve Yatırım Olanakları, Maden Tetkik ve Arama Genel Müdürlüğü, Mayıs
  • Atiz, A., Karakılcık, H., Erden, M. ve Karakılcık, M. (2019). Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy, Energy Conversion and Management, 195: 798–809. doi: 10.1016/j.enconman.2019.05.056
  • Astolfi, M., Xodo, L., Romano, M.C. ve Macchi, E. (2010) Technical and economical analysis of a solar–geothermal hybrid plant based on an Organic Rankine Cycle, Geothermics, 40: 58–68. doi: 10.1016/j.geothermics.2010.09.009
  • https://ec.europa.eu/jrc/en/pvgis Erişim Tarihi: 29.09.2020, Konu: Konya ili şartlarında eğimli kolektöre gelen radyasyon değerleri
  • https://ORC-world-map.org Erişim Tarihi: 29.03.2019, Konu: Dünya’da kurulu ORÇ sistemlerinin harita üzerinde gösterilmesi.
  • Bianchi, M., Branchini, L., De Pascale, A., Melino, F., Ottaviano, S., Torricelli, N. ve Zampieri, G. (2018) Performance and operation of micro-ORC energy system using geothermal heat source, Energy Procedia, 148, 384-391. doi:10.1016/j.egypro.2018.08.099.
  • Çakıcı, D.M., Erdogan, A. ve Colpan, C.Ö. (2017) Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors, Energy, 120: 306-319. doi:10.1016/j.energy.2016.11.083
  • Cardemil, J.M., Cortés, F., Díaz, A. ve Escobar, R. (2016) Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile, Energy Conversion and Management, 123, 348–361 doi: 10.1016/j.enconman.2016.06.032
  • Lentz, A. ve Almanza, R. (2005) Solar-geothermal hybrid system, Appl Therm Eng, 26, 1537–44. doi:10.1016/j.applthermaleng.2005.12.008
  • Kılıç, F. (2016) Geothermal Energy in Turkey. Energy & Envıronment, 27: 360-376. doi: 10.1177/0958305X15627544
  • Mir I., Rodrigo, R., Vergara, J. ve Bertrand, J.( 2011) Performance Analysis of a Hybrid Solar-Geothermal Power Plant in Northern Chile, World renewable energy congress, Linköpink,Sweden, 1281-1288
  • Pridasawas, W ve Lundqvist, P. (2006) A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant, International Journal of Refrigeration, 30: 840-850. doi: 10.1016/j.ijrefrig.2006.11.012
  • Petela, R. (1964) Exergy of heat radiation, ASME J. Heat Transfer, 86:187–192.
  • Shengjun, Z., Huaixin, W. ve Tao, G. (2011) Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Applied Energy, 88, 2740–2754. doi:10.1016/j.apenergy.2011.02.034
  • Tchanche, B.F., Lambrinos, Gr., Frangoudakis , A. ve Papadakis, G. (2009) Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system, Applied Energy, 87, 1295–1306. doi:10.1016/j.apenergy.2009.07.011.
  • Tempesti, D., Manfrida, G. ve Fiaschi D. (2012) Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy. Applied Energy, 97, 609-617 doi: 10.1016/j.apenergy.2012.02.012
  • Zhou C. (2014) Hybridisation of solar and geothermal energy in both subcriticaland supercritical Organic Rankine Cycles, Energy Conversion and Management, 81,72–82 doi: 10.1016/j.enconman.2014.02.007
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Fatih Akkurt 0000-0001-8727-8854

Emre Kaçanoğlu 0000-0003-3918-6618

Publication Date August 31, 2021
Submission Date March 15, 2021
Acceptance Date August 12, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Akkurt, F., & Kaçanoğlu, E. (2021). KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 649-660. https://doi.org/10.17482/uumfd.897340
AMA Akkurt F, Kaçanoğlu E. KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ. UUJFE. August 2021;26(2):649-660. doi:10.17482/uumfd.897340
Chicago Akkurt, Fatih, and Emre Kaçanoğlu. “KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 2 (August 2021): 649-60. https://doi.org/10.17482/uumfd.897340.
EndNote Akkurt F, Kaçanoğlu E (August 1, 2021) KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 649–660.
IEEE F. Akkurt and E. Kaçanoğlu, “KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ”, UUJFE, vol. 26, no. 2, pp. 649–660, 2021, doi: 10.17482/uumfd.897340.
ISNAD Akkurt, Fatih - Kaçanoğlu, Emre. “KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (August 2021), 649-660. https://doi.org/10.17482/uumfd.897340.
JAMA Akkurt F, Kaçanoğlu E. KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ. UUJFE. 2021;26:649–660.
MLA Akkurt, Fatih and Emre Kaçanoğlu. “KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 2, 2021, pp. 649-60, doi:10.17482/uumfd.897340.
Vancouver Akkurt F, Kaçanoğlu E. KONYA İLİ ATMOSFERİK ŞARTLARINDA GÜNEŞ ENERJİSİ DESTEKLİ JEOTERMAL KAYNAKLI ORGANİK RANKİNE ÇEVRİMİ SİSTEMİNİN TERMODİNAMİK ANALİZİ. UUJFE. 2021;26(2):649-60.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.