Research Article
BibTex RIS Cite

Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures

Year 2021, Volume: 26 Issue: 2, 629 - 648, 31.08.2021
https://doi.org/10.17482/uumfd.914994

Abstract

In this study, the dynamic stability analysis of the laminated composite single-bay and two-bay curved frame structures has been investigated. For this purpose, a computer code is written in MATLAB to evaluate the natural frequency values, critical buckling load, and first unstable regions of the laminated composite curved frames. The effects of radii of curvature and stacking order on the static and dynamic stability of both single and two bay arch frame structures are investigated. Besides, the effects of the stacking order are investigated by considering five different stacking sequences. The results of the present study are compared with the results obtained numerically via ANSYS for validation. It is concluded that the radius of curvature has a small effect on the first five natural frequency values, buckling loads, first unstable regions of the structure, whereas the fiber orientation considerably has a considerable impact on such static and dynamic properties.

References

  • Alambeigi, K., Mohammadimehr, M., Bamdad, M. & Rabczuk, T. (2020). Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mechanica, 231,3199-3218. https://doi.org/10.1007/s00707-020-02697-5
  • Bolotin, V. V. (1964). The dynamic stability of elastic systems. Holden-Day, San Fransisco.
  • Eken, S. (2019). Free Vibration Analysis of Composite Aircraft Wings Modeled as Thin-Walled Beams with NACA Airfoil Sections. Thin-Walled Structures, 139,362–371. https://doi.org/10.1016/j.tws.2019.01.042
  • Gay, D. (2014). Composite Materials: Design and Applications. CRC Press, Florida
  • Glabisz, W., Jarczewska, K. & Hołubowski, R. (2020). Stability of nanobeams under nonconservative surface loading. Acta Mechanica, 231,3703–3714. https://doi.org/10.1007/s00707-020-02732-5
  • Goren Kiral, B., Kiral, Z. & Ozturk, H. (2015). Stability Analysis of Delaminated Composite Beams. Composites Part B: Engineering, 79, 406–418. https://doi.org/10.1016/j.compositesb.2015.05.008
  • Goyal, V.K. & Kapania, R.K. (2007). A Shear-Deformable Beam Element for the Analysis of Laminated Composites. Finite Elements in Analysis and Design, 43(6–7), 463–477. https://doi.org/10.1016/j.finel.2006.11.011
  • He, G. & Yang, X. (2014). Finite Element Analysis for Buckling of Two-Layer Composite Beams Using Reddy’s Higher Order Beam Theory. Finite Elements in Analysis and Design, 83, 49–57. https://doi.org/10.1016/j.finel.2014.01.004
  • Hodges, D. H., Atilgan, A. R., Fulton, M. V. & Rehfield, L. W. (1991). Free‐Vibration Analysis of Composite Beams. Journal of American Helicopter Society, 36(3):36–47. https://doi.org/10.4050/JAHS.36.36
  • Huang, S. & Qiao, P. (2020). Buckling of Thin-Walled I-Section Laminated Composite Curved Beams. Thin-Walled Structures, 154, https://doi.org/10.1016/j.tws.2020.106843
  • Kahya, V. (2016). Buckling Analysis of Laminated Composite and Sandwich Beams by the Finite Element Method. Composites Part B: Engineering, 91, 126–134. https://doi.org/10.1016/j.compositesb.2016.01.031
  • Ke, L.L., Yang, J. & Kitipornchai, S. (2013). Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams. Mechanics of Advanced Materials and Structures, 20(1), 28–37. https://doi.org/10.1080/15376494.2011.581412
  • Lee, J. & Kim, S.E. (2002). Lateral Buckling Analysis of Thin-Walled Laminated Channel-Section Beams. Composite Structures, 56(4), 391–399. https://doi.org/10.1016/S0263-8223(02)00022-3
  • Machado, S.P. & Cortínez, V.H. (2009). Dynamic Stability of Thin-Walled Composite Beams under Periodic Transverse Excitation. Journal of Sound and Vibration, 321(1-2), 220–241. https://doi.org/10.1016/j.jsv.2008.09.026
  • Marur, S.R. & Kant, T. (1996). Free Vibration Analysis of Fiber Reinforced Composite Beams Using Higher Order Theories and Finite Element Modelling. Journal of Sound and Vibration, 194(3),337–351. https://doi.org/10.1006/jsvi.1996.0362
  • Ozturk, H. (2015). Vibration Analysis of a Pre-Stressed Laminated Composite Curved Beam. Steel and Composite Structures, 19(3), 635–659. https://doi.org/10.12989/scs.2015.19.3.635
  • Öztürk, H., Yeşilyurt, I. & Sabuncu, M. (2006). In-Plane Stability Analysis of Non-Uniform Cross-Sectioned Curved Beams, Journal of Sound and Vibration, 296(1–2), 277–291. https://doi.org/10.1016/j.jsv.2006.03.002
  • Petyt, M. (2010). Introduction to Finite Element Vibration Analysis. Cambridge University Press, New York.
  • Qin, B., Zhao, X., Liu, H., Yu, Y., & Wang, Q. (2020). Free Vibration Analysis of Curved Laminated Composite Beams with Different Shapes, Lamination Schemes, and Boundary Conditions. Materials, 13(4),1010, https://doi.org/10.3390/ma13041010
  • Saravia, C.M., Machado, S.P. & Cortínez, V.H. (2011). Free Vibration and Dynamic Stability of Rotating Thin-Walled Composite Beams. European Journal of Mechanics – A/Solids, 30(3), 432–441. https://doi.org/10.1016/j.euromechsol.2010.12.015
  • Smoljanović, H., Balić, I., Munjiza, A., Akmadžić, V. & Trogrlić, B. (2020). Analysis of dynamic stability of beam structures. Acta Mechanica, 231, 4701–4715. https://doi.org/10.1007/s00707-020-02793-6
  • Tsai, X.Y. & Chen, L.W. (2002). Dynamic Stability of a Shape Memory Alloy Wire Reinforced Composite Beam. Composite Structures, 56(3), 235–241. https://doi.org/10.1016/S0263-8223(02)00008-9
  • Vo, T. P., Thai, H.T. &Aydogdu, M. (2017). Free Vibration of Axially Loaded Composite Beams Using a Four-Unknown Shear and Normal Deformation Theory. Composite Structures, 178, 406–414.
  • Vo-Duy, T., Ho-Huu, V. & Nguyen-Thoi, T. (2019). Free Vibration Analysis of Laminated FG-CNT Reinforced Composite Beams Using Finite Element Method. Frontiers of Structural and Civil Engineering, 13(2),324–336. https://doi.org/10.1016/j.compstruct.2017.07.022
  • Wang, X., Zhu, X. & Hu, P. (2015). Isogeometric Finite Element Method for Buckling Analysis of Generally Laminated Composite Beams with Different Boundary Conditions. International Journal of Mechanical Sciences, 104, 190–199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
  • Yeh, M.K. & Kuo, Y.T. (2004). Dynamic Instability of Composite Beams under Parametric Excitation. Composite Sciences and Technology, 64(12), 1885–1893. https://doi.org/10.1016/j.compscitech.2004.02.001
  • Zabihollah, A. & Ganesan, R. (2010). Buckling Analysis of Tapered Composite Beams Using a Higher Order Finite Element Formulation. Journal of Reinforced Plastics and Composites, 29(17), 2663–2683. https://doi.org/10.1177%2F0731684409352124

KATMANLI EĞRİ KOMPOZİT ÇERÇEVE YAPILARIN DİNAMİK KARARLILIK ANALİZİ

Year 2021, Volume: 26 Issue: 2, 629 - 648, 31.08.2021
https://doi.org/10.17482/uumfd.914994

Abstract

Bu çalışmada tek ve iki bölütlü tabakalı eğri kompozit çerçeve yapıların dinamik kararlılık analizleri incelenmiştir. Bunun için, MATLAB ortamında yazılan bir bilgisayar kodu vasıtasıyla tabakalı kompozit eğri çerçeve yapıların doğal frekansları, kritik burkulma yükü ve birinci kararsızlık bölgeleri ele alınmıştır. Bu kapsamda hem tek bölütlü hem de çift bölütlü yapının eğrilik yarıçapının statik ve dinamik kararlılığı üzerine olan etkileri araştırılmıştır. Ayrıca, beş farklı fiber açısı düzeni dikkate alınarak farklı fiber açılarının da bu özellikler üzerindeki etkisi incelenmiştir. Kullanılan sonlu eleman modelinin doğruluğu aynı yapının ANSYS ortamında modellenmesi ve analizinden elde edilen sonuçlarla karşılaştırılarak sağlanmıştır. Çalışmanın sonucunda eğrilik yarıçapının yapının ilk beş doğal frekansı, kritik burkulma yükü ve birinci kararsızlık bölgesi üzerinde küçük bir etkisinin olduğu gözlemlenirken elyaf oryantasyonunun bu özellikler üzerinde kayda değer bir etki oluşturduğu tespit edilmiştir.

References

  • Alambeigi, K., Mohammadimehr, M., Bamdad, M. & Rabczuk, T. (2020). Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mechanica, 231,3199-3218. https://doi.org/10.1007/s00707-020-02697-5
  • Bolotin, V. V. (1964). The dynamic stability of elastic systems. Holden-Day, San Fransisco.
  • Eken, S. (2019). Free Vibration Analysis of Composite Aircraft Wings Modeled as Thin-Walled Beams with NACA Airfoil Sections. Thin-Walled Structures, 139,362–371. https://doi.org/10.1016/j.tws.2019.01.042
  • Gay, D. (2014). Composite Materials: Design and Applications. CRC Press, Florida
  • Glabisz, W., Jarczewska, K. & Hołubowski, R. (2020). Stability of nanobeams under nonconservative surface loading. Acta Mechanica, 231,3703–3714. https://doi.org/10.1007/s00707-020-02732-5
  • Goren Kiral, B., Kiral, Z. & Ozturk, H. (2015). Stability Analysis of Delaminated Composite Beams. Composites Part B: Engineering, 79, 406–418. https://doi.org/10.1016/j.compositesb.2015.05.008
  • Goyal, V.K. & Kapania, R.K. (2007). A Shear-Deformable Beam Element for the Analysis of Laminated Composites. Finite Elements in Analysis and Design, 43(6–7), 463–477. https://doi.org/10.1016/j.finel.2006.11.011
  • He, G. & Yang, X. (2014). Finite Element Analysis for Buckling of Two-Layer Composite Beams Using Reddy’s Higher Order Beam Theory. Finite Elements in Analysis and Design, 83, 49–57. https://doi.org/10.1016/j.finel.2014.01.004
  • Hodges, D. H., Atilgan, A. R., Fulton, M. V. & Rehfield, L. W. (1991). Free‐Vibration Analysis of Composite Beams. Journal of American Helicopter Society, 36(3):36–47. https://doi.org/10.4050/JAHS.36.36
  • Huang, S. & Qiao, P. (2020). Buckling of Thin-Walled I-Section Laminated Composite Curved Beams. Thin-Walled Structures, 154, https://doi.org/10.1016/j.tws.2020.106843
  • Kahya, V. (2016). Buckling Analysis of Laminated Composite and Sandwich Beams by the Finite Element Method. Composites Part B: Engineering, 91, 126–134. https://doi.org/10.1016/j.compositesb.2016.01.031
  • Ke, L.L., Yang, J. & Kitipornchai, S. (2013). Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams. Mechanics of Advanced Materials and Structures, 20(1), 28–37. https://doi.org/10.1080/15376494.2011.581412
  • Lee, J. & Kim, S.E. (2002). Lateral Buckling Analysis of Thin-Walled Laminated Channel-Section Beams. Composite Structures, 56(4), 391–399. https://doi.org/10.1016/S0263-8223(02)00022-3
  • Machado, S.P. & Cortínez, V.H. (2009). Dynamic Stability of Thin-Walled Composite Beams under Periodic Transverse Excitation. Journal of Sound and Vibration, 321(1-2), 220–241. https://doi.org/10.1016/j.jsv.2008.09.026
  • Marur, S.R. & Kant, T. (1996). Free Vibration Analysis of Fiber Reinforced Composite Beams Using Higher Order Theories and Finite Element Modelling. Journal of Sound and Vibration, 194(3),337–351. https://doi.org/10.1006/jsvi.1996.0362
  • Ozturk, H. (2015). Vibration Analysis of a Pre-Stressed Laminated Composite Curved Beam. Steel and Composite Structures, 19(3), 635–659. https://doi.org/10.12989/scs.2015.19.3.635
  • Öztürk, H., Yeşilyurt, I. & Sabuncu, M. (2006). In-Plane Stability Analysis of Non-Uniform Cross-Sectioned Curved Beams, Journal of Sound and Vibration, 296(1–2), 277–291. https://doi.org/10.1016/j.jsv.2006.03.002
  • Petyt, M. (2010). Introduction to Finite Element Vibration Analysis. Cambridge University Press, New York.
  • Qin, B., Zhao, X., Liu, H., Yu, Y., & Wang, Q. (2020). Free Vibration Analysis of Curved Laminated Composite Beams with Different Shapes, Lamination Schemes, and Boundary Conditions. Materials, 13(4),1010, https://doi.org/10.3390/ma13041010
  • Saravia, C.M., Machado, S.P. & Cortínez, V.H. (2011). Free Vibration and Dynamic Stability of Rotating Thin-Walled Composite Beams. European Journal of Mechanics – A/Solids, 30(3), 432–441. https://doi.org/10.1016/j.euromechsol.2010.12.015
  • Smoljanović, H., Balić, I., Munjiza, A., Akmadžić, V. & Trogrlić, B. (2020). Analysis of dynamic stability of beam structures. Acta Mechanica, 231, 4701–4715. https://doi.org/10.1007/s00707-020-02793-6
  • Tsai, X.Y. & Chen, L.W. (2002). Dynamic Stability of a Shape Memory Alloy Wire Reinforced Composite Beam. Composite Structures, 56(3), 235–241. https://doi.org/10.1016/S0263-8223(02)00008-9
  • Vo, T. P., Thai, H.T. &Aydogdu, M. (2017). Free Vibration of Axially Loaded Composite Beams Using a Four-Unknown Shear and Normal Deformation Theory. Composite Structures, 178, 406–414.
  • Vo-Duy, T., Ho-Huu, V. & Nguyen-Thoi, T. (2019). Free Vibration Analysis of Laminated FG-CNT Reinforced Composite Beams Using Finite Element Method. Frontiers of Structural and Civil Engineering, 13(2),324–336. https://doi.org/10.1016/j.compstruct.2017.07.022
  • Wang, X., Zhu, X. & Hu, P. (2015). Isogeometric Finite Element Method for Buckling Analysis of Generally Laminated Composite Beams with Different Boundary Conditions. International Journal of Mechanical Sciences, 104, 190–199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
  • Yeh, M.K. & Kuo, Y.T. (2004). Dynamic Instability of Composite Beams under Parametric Excitation. Composite Sciences and Technology, 64(12), 1885–1893. https://doi.org/10.1016/j.compscitech.2004.02.001
  • Zabihollah, A. & Ganesan, R. (2010). Buckling Analysis of Tapered Composite Beams Using a Higher Order Finite Element Formulation. Journal of Reinforced Plastics and Composites, 29(17), 2663–2683. https://doi.org/10.1177%2F0731684409352124
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Oğuzhan Daş 0000-0001-7623-9278

Hasan Öztürk 0000-0002-8308-8428

Can Gönenli 0000-0001-9163-1569

Publication Date August 31, 2021
Submission Date April 13, 2021
Acceptance Date July 8, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Daş, O., Öztürk, H., & Gönenli, C. (2021). Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 629-648. https://doi.org/10.17482/uumfd.914994
AMA Daş O, Öztürk H, Gönenli C. Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures. UUJFE. August 2021;26(2):629-648. doi:10.17482/uumfd.914994
Chicago Daş, Oğuzhan, Hasan Öztürk, and Can Gönenli. “Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 2 (August 2021): 629-48. https://doi.org/10.17482/uumfd.914994.
EndNote Daş O, Öztürk H, Gönenli C (August 1, 2021) Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 629–648.
IEEE O. Daş, H. Öztürk, and C. Gönenli, “Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures”, UUJFE, vol. 26, no. 2, pp. 629–648, 2021, doi: 10.17482/uumfd.914994.
ISNAD Daş, Oğuzhan et al. “Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (August 2021), 629-648. https://doi.org/10.17482/uumfd.914994.
JAMA Daş O, Öztürk H, Gönenli C. Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures. UUJFE. 2021;26:629–648.
MLA Daş, Oğuzhan et al. “Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 2, 2021, pp. 629-48, doi:10.17482/uumfd.914994.
Vancouver Daş O, Öztürk H, Gönenli C. Dynamic Stability Analysis of the Laminated Composite Curved Frame Structures. UUJFE. 2021;26(2):629-48.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.