Araştırma Makalesi
BibTex RIS Kaynak Göster

ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU

Yıl 2021, Cilt: 26 Sayı: 2, 389 - 400, 31.08.2021
https://doi.org/10.17482/uumfd.932288

Öz

Okside edici çeşitli kimyasalların kullanımıyla gerçekleştirilen çamur dezentegrasyonu, anaerobik çamur çürütme performansını ve biyogaz verimini önemli derecede arttıran bir çamur ön arıtım yöntemi olarak kabul edilmektedir. Bu çalışmada farklı dozlarda hidrojen peroksit (HP) ve peroksimonosülfat (PMS) kimyasalları kullanılarak, konserve gıda fabrikası orijinli bir atık aktif çamur örneği dezentegre edilmiştir. Ayrıca ultrasonik yöntemle gerçekleştirilen aktivasyon işleminin (40 kHz, 30 dak.) etkisi, dezentegrasyon verimliliği açısından irdelenmiştir. Uygulanan yöntemlerin etkinliğinin değerlendirilmesi, çamurdaki çözünmüş kimyasal oksijen ihtiyacı (ÇKOİ) parametresindeki değişimler üzerinden yapılmıştır. Çalışma sonuçları, sadece HP ve PMS ile yapılan dezentegrason yöntemlerinde ulaşılan maksimum ÇKOİ değerlerinin istatistiksel olarak benzer olduğunu göstermiştir. Ultrasonik yöntemle aktivasyonun gerek PMS gerekse HP ile gerçekleştirilen çamur dezentegrasyon verimliliğini belirgin şekilde arttırdığı sonucuna ulaşılmıştır. Dezentegre edilmemiş çamurda 0,05 olarak belirlenen ÇKOİ/TKOİ (Çözünmüş Kimyasal Oksijen İhtiyacı/Toplam Kimyasal Oksijen İhtiyacı) değeri ultrasonik olarak aktive edilmiş kimyasal ilavesiyle 0,33-0,36 seviyelerine çıkmıştır. Yürütülen çalışma kapsamında ultrasonik olarak aktive edilmiş HP’nin 44 mM dozunda uygulanmasıyla en yüksek çamur dezentegrasyon verimliliğine ulaşıldığı tespit edilmiştir.

Kaynakça

  • APHA, AWWA, WEF, (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Baltimore.
  • Barrios, J. A. ve diğ. (2021) Efficiency of Integrated Electrooxidation and Anaerobic Digestion of Waste Activated Sludge, Biotechnology for Biofuels, 14:81. https://doi.org/10.1186/s13068-021-01929-7
  • Bougrier, C., Albasi, C., Delgenès, J. P., ve Carrère, H. (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability, Chemical Engineering and Processing: Process Intensification, 45, 711-718. https://doi.org/10.1016/j.cep.2006.02.005
  • Çırakoğlu, C., Dindar, E., ve Topaç, F. O. (2017) Atık Aktif Çamur Dezentegrasyonu: Mekanik, Termal ve Kimyasal Yöntemler, Uludağ University Journal of The Faculty of Engineering, 22, 1, 29-38. https://doi.org/10.17482/uumfd.305184
  • Erkan, H. S. (2019) Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: A comparative study, Environmental Science: Water Research and Technology, 5, 2027-2040. https://doi.org/10.1039/c9ew00663j
  • Eskicioglu, C., Prorot, A., Marin, J., Droste, R.L., ve Kennedy, K.J. (2008) Synergetic Pretreatment of Sewage Sludge by Microwave Irradiation in Presence of H2O2 for Enhanced Anaerobic Digestion, Water Research, 42(18), 4674-4682. https://doi.org/10.1016/j.watres.2008.08.010
  • Gao, Yu, Yong Liu, ve Tao Han. (2019) Pretreatment of Waste Activated Sludge Based on Pulsed Electric Eield and Corona Discharge Techniques, In The Activated Sludge Process: Methods and Recent Developments, ed. Benjamin Lefèbvre. Nova Science Publishers, Inc., 1–62. ISBN: 978-1-53615-202-9
  • Gong, C., Jiang, J., Li, D., ve Tian, S. (2015) Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge, Scientific Reports, 5, 11419. https://doi.org/10.1038/srep11419
  • Kim, M. S., Lee, K. M., Kim, H. E., Lee, H. J., Lee, C., ve Lee, C. (2016) Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability, Environmental Science and Technology, 50, 7106-7115. https://doi.org/10.1021/acs.est.6b00019
  • Kim, T. H., Lee, S. R., Nam, Y. K., Yang, J., Park, C., ve Lee, M. (2009) Disintegration of excess activated sludge by hydrogen peroxide oxidation, Desalination, 246, 275-284. https://doi.org/10.1016/j.desal.2008.06.023
  • Lee, K. M., Kim, M. S., ve Lee, C. (2016) Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability, Sustainable Environment Research, 26(4), 177-183. https://doi.org/10.1016/j.serj.2015.10.005
  • Liang, Zhiwei ve diğ. (2021) Sludge Digestibility and Functionally Active Microorganisms in Methanogenic Sludge Digesters Revealed by E. Coli-Fed Digestion and Microbial Source Tracking, Environmental Research, 193: 110539. https://doi.org/10.1016/j.envres.2020.110539
  • Liu, C., Wu, B., ve Chen, X. (2018) Sulfate radical-based oxidation for sludge treatment: A review, In Chemical Engineering Journal, 335, 865-875. https://doi.org/10.1016/j.cej.2017.10.162
  • Matzek, L. W., ve Carter, K. E. (2016) Activated persulfate for organic chemical degradation: a review, Chemosphere 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055
  • Neyens, E., ve Baeyens, J. (2003) A Review of Classic Fenton`s Peroxidation as an Advances Oxidation Technique, Journal of Hazardous Materials, 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0
  • Niu, T., Zhou, Z., Ren, W., Jiang, L. M., Li, B., Wei, H., Li, J., ve Wang, L. (2016) Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances, International Biodeterioration and Biodegradation, 106, 170-177. https://doi.org/10.1016/j.ibiod.2015.10.021
  • Olabi, A., ve Yıldız, S. (2021) Sludge Disintegration Using UV Assisted Sono-Fenton Process, Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-14505-1
  • Öztürk, İ. (1999) Anaerobik Biyoteknoloji ve Atık Arıtımındaki Uygulamaları, Su Vakfı Yayınları, İstanbul.
  • Prorot, A., Julien, L., Christophe, D., ve Patrick, L. (2011) Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach, Biochemical Engineering Journal, 54(3), 178-184. https://doi.org/10.1016/j.bej.2011.02.016
  • Rahmani, A. R., Mousavi-Tashar, A., Masoumi, Z., ve Azarian, G. (2019) Integrated advanced oxidation process, sono-Fenton treatment, for mineralization and volume reduction of activated sludge, Ecotoxicology and Environmental Safety, 168, 120-126, https://doi.org/10.1016/j.ecoenv.2018.10.069
  • Rastogi, A., Al-Abed, S. R., ve Dionysiou, D. D. (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Applied Catalysis B: Environmental, 85(3), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010
  • Ren, W., Zhou, Z., Zhu, Y., Jiang, L. M., Wei, H., Niu, T., Fu, P., ve Qiu, Z. (2015) Effect of sulfate radical oxidation on disintegration of waste activated sludge, International Biodeterioration and Biodegradation, 104, 384-390. https://doi.org/10.1016/j.ibiod.2015.07.008
  • Shen, H. ve Anastasio C. (2012) A comparison of hydroxyl radical and hydrogen peroxide generation in ambient particle extracts and laboratory metal solutions, Atmospheric Environment, 46, 665- 668. https://doi.org/10.1016/j.atmosenv.2011.10.006
  • Skórkowski, L., Zielewicz, E., Kawczyński, A., ve Gil, B. (2018) Assessment of excess sludge ultrasonic, mechanical and hybrid pretreatment in relation to the energy parameters, Water (Switzerland), 10(5), 551. https://doi.org/10.3390/w10050551
  • Ushani, U., ve diğ. (2020) Sulfate Radicals-Based Advanced Oxidation Technology in Various Environmental Remediation: A State-of-The–art Review, Chemical Engineering Journal, 402:126232. https://doi.org/10.1016/j.cej.2020.126232
  • Wacławek, S., Grübel, K., ve Černík, M. (2016) The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge, Environmental Technology (United Kingdom), 37(10), 1296-1304. https://doi.org/10.1080/09593330.2015.1112434
  • Wang, J., ve Wang, S. (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chemical Engineering Journal, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059
  • Wolski, P. (2020) Sonification Energy in the Process of Ultrasonic Disintegration, Journal of Ecological Engineering, 21(3): 36–40. https://doi.org/10.12911/22998993/118301
  • Yang, S. S., Guo, W. Q., Meng, Z. H., Zhou, X. J., Feng, X. C., Zheng, H. S., Liu, B., Ren, N. Q., ve Cui, Y. S. (2013) Characterizing the fluorescent products of waste activated sludge in dissolved organic matter following ultrasound assisted ozone pretreatments, Bioresource Technology, 131, 560-563. https://doi.org/10.1016/j.biortech.2013.01.024
  • Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., ve Niu, R. (2010) Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide, Journal of Hazardous Materials, 179(1-3), 552-8. https://doi.org/10.1016/j.jhazmat.2010.03.039
  • Ye, F., Ji, H., ve Ye, Y. (2012). Effect of potassium ferrate on disintegration of waste activated sludge (WAS), Journal of Hazardous Materials, 219-220, 164-8. https://doi.org/10.1016/j.jhazmat.2012.03.070

Disintegration of Waste Activated Sludge by Hydroxyl and Sulfate Radicals

Yıl 2021, Cilt: 26 Sayı: 2, 389 - 400, 31.08.2021
https://doi.org/10.17482/uumfd.932288

Öz

Sludge disintegration using various oxidizing chemicals is accepted as a sludge pretreatment method that significantly increases anaerobic sludge digestion performance and biogas yield. In this study, waste-activated sludge from a canned food factory was disintegrated using different doses of hydrogen peroxide (HP) and peroxymonosulfate (PMS) chemicals. In addition, the ultrasonic activation process (40 kHz, 30 min.) has been examined with respect to sludge disintegration efficiency. The evaluation of the effectiveness of the applied methods was made via the changes in the dissolved chemical oxygen demand (SCOD) parameter in the sludge. The results of the study showed that the maximum SCOD values achieved by HP and PMS disintegration were statistically similar. It has been concluded that the activation by the ultrasonic method significantly increased the efficiency of sludge disintegration performed with both PMS and HP. The value of SCOD/TCOD (Dissolved Chemical Oxygen Demand/Total Chemical Oxygen Demand) determined as 0.05 in the non-disintegrated sludge increased to 0.33-0.36 levels with the addition of ultrasonically activated chemicals. It has been determined that the highest sludge disintegration efficiency has been achieved with the application of ultrasonically activated HP at a dose of 44 mM.

Kaynakça

  • APHA, AWWA, WEF, (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Baltimore.
  • Barrios, J. A. ve diğ. (2021) Efficiency of Integrated Electrooxidation and Anaerobic Digestion of Waste Activated Sludge, Biotechnology for Biofuels, 14:81. https://doi.org/10.1186/s13068-021-01929-7
  • Bougrier, C., Albasi, C., Delgenès, J. P., ve Carrère, H. (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability, Chemical Engineering and Processing: Process Intensification, 45, 711-718. https://doi.org/10.1016/j.cep.2006.02.005
  • Çırakoğlu, C., Dindar, E., ve Topaç, F. O. (2017) Atık Aktif Çamur Dezentegrasyonu: Mekanik, Termal ve Kimyasal Yöntemler, Uludağ University Journal of The Faculty of Engineering, 22, 1, 29-38. https://doi.org/10.17482/uumfd.305184
  • Erkan, H. S. (2019) Waste activated sludge disintegration by hydroxyl and sulfate radical-based oxidation: A comparative study, Environmental Science: Water Research and Technology, 5, 2027-2040. https://doi.org/10.1039/c9ew00663j
  • Eskicioglu, C., Prorot, A., Marin, J., Droste, R.L., ve Kennedy, K.J. (2008) Synergetic Pretreatment of Sewage Sludge by Microwave Irradiation in Presence of H2O2 for Enhanced Anaerobic Digestion, Water Research, 42(18), 4674-4682. https://doi.org/10.1016/j.watres.2008.08.010
  • Gao, Yu, Yong Liu, ve Tao Han. (2019) Pretreatment of Waste Activated Sludge Based on Pulsed Electric Eield and Corona Discharge Techniques, In The Activated Sludge Process: Methods and Recent Developments, ed. Benjamin Lefèbvre. Nova Science Publishers, Inc., 1–62. ISBN: 978-1-53615-202-9
  • Gong, C., Jiang, J., Li, D., ve Tian, S. (2015) Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge, Scientific Reports, 5, 11419. https://doi.org/10.1038/srep11419
  • Kim, M. S., Lee, K. M., Kim, H. E., Lee, H. J., Lee, C., ve Lee, C. (2016) Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability, Environmental Science and Technology, 50, 7106-7115. https://doi.org/10.1021/acs.est.6b00019
  • Kim, T. H., Lee, S. R., Nam, Y. K., Yang, J., Park, C., ve Lee, M. (2009) Disintegration of excess activated sludge by hydrogen peroxide oxidation, Desalination, 246, 275-284. https://doi.org/10.1016/j.desal.2008.06.023
  • Lee, K. M., Kim, M. S., ve Lee, C. (2016) Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability, Sustainable Environment Research, 26(4), 177-183. https://doi.org/10.1016/j.serj.2015.10.005
  • Liang, Zhiwei ve diğ. (2021) Sludge Digestibility and Functionally Active Microorganisms in Methanogenic Sludge Digesters Revealed by E. Coli-Fed Digestion and Microbial Source Tracking, Environmental Research, 193: 110539. https://doi.org/10.1016/j.envres.2020.110539
  • Liu, C., Wu, B., ve Chen, X. (2018) Sulfate radical-based oxidation for sludge treatment: A review, In Chemical Engineering Journal, 335, 865-875. https://doi.org/10.1016/j.cej.2017.10.162
  • Matzek, L. W., ve Carter, K. E. (2016) Activated persulfate for organic chemical degradation: a review, Chemosphere 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055
  • Neyens, E., ve Baeyens, J. (2003) A Review of Classic Fenton`s Peroxidation as an Advances Oxidation Technique, Journal of Hazardous Materials, 98(1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0
  • Niu, T., Zhou, Z., Ren, W., Jiang, L. M., Li, B., Wei, H., Li, J., ve Wang, L. (2016) Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances, International Biodeterioration and Biodegradation, 106, 170-177. https://doi.org/10.1016/j.ibiod.2015.10.021
  • Olabi, A., ve Yıldız, S. (2021) Sludge Disintegration Using UV Assisted Sono-Fenton Process, Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-14505-1
  • Öztürk, İ. (1999) Anaerobik Biyoteknoloji ve Atık Arıtımındaki Uygulamaları, Su Vakfı Yayınları, İstanbul.
  • Prorot, A., Julien, L., Christophe, D., ve Patrick, L. (2011) Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach, Biochemical Engineering Journal, 54(3), 178-184. https://doi.org/10.1016/j.bej.2011.02.016
  • Rahmani, A. R., Mousavi-Tashar, A., Masoumi, Z., ve Azarian, G. (2019) Integrated advanced oxidation process, sono-Fenton treatment, for mineralization and volume reduction of activated sludge, Ecotoxicology and Environmental Safety, 168, 120-126, https://doi.org/10.1016/j.ecoenv.2018.10.069
  • Rastogi, A., Al-Abed, S. R., ve Dionysiou, D. D. (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Applied Catalysis B: Environmental, 85(3), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010
  • Ren, W., Zhou, Z., Zhu, Y., Jiang, L. M., Wei, H., Niu, T., Fu, P., ve Qiu, Z. (2015) Effect of sulfate radical oxidation on disintegration of waste activated sludge, International Biodeterioration and Biodegradation, 104, 384-390. https://doi.org/10.1016/j.ibiod.2015.07.008
  • Shen, H. ve Anastasio C. (2012) A comparison of hydroxyl radical and hydrogen peroxide generation in ambient particle extracts and laboratory metal solutions, Atmospheric Environment, 46, 665- 668. https://doi.org/10.1016/j.atmosenv.2011.10.006
  • Skórkowski, L., Zielewicz, E., Kawczyński, A., ve Gil, B. (2018) Assessment of excess sludge ultrasonic, mechanical and hybrid pretreatment in relation to the energy parameters, Water (Switzerland), 10(5), 551. https://doi.org/10.3390/w10050551
  • Ushani, U., ve diğ. (2020) Sulfate Radicals-Based Advanced Oxidation Technology in Various Environmental Remediation: A State-of-The–art Review, Chemical Engineering Journal, 402:126232. https://doi.org/10.1016/j.cej.2020.126232
  • Wacławek, S., Grübel, K., ve Černík, M. (2016) The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge, Environmental Technology (United Kingdom), 37(10), 1296-1304. https://doi.org/10.1080/09593330.2015.1112434
  • Wang, J., ve Wang, S. (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chemical Engineering Journal, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059
  • Wolski, P. (2020) Sonification Energy in the Process of Ultrasonic Disintegration, Journal of Ecological Engineering, 21(3): 36–40. https://doi.org/10.12911/22998993/118301
  • Yang, S. S., Guo, W. Q., Meng, Z. H., Zhou, X. J., Feng, X. C., Zheng, H. S., Liu, B., Ren, N. Q., ve Cui, Y. S. (2013) Characterizing the fluorescent products of waste activated sludge in dissolved organic matter following ultrasound assisted ozone pretreatments, Bioresource Technology, 131, 560-563. https://doi.org/10.1016/j.biortech.2013.01.024
  • Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., ve Niu, R. (2010) Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide, Journal of Hazardous Materials, 179(1-3), 552-8. https://doi.org/10.1016/j.jhazmat.2010.03.039
  • Ye, F., Ji, H., ve Ye, Y. (2012). Effect of potassium ferrate on disintegration of waste activated sludge (WAS), Journal of Hazardous Materials, 219-220, 164-8. https://doi.org/10.1016/j.jhazmat.2012.03.070
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Anıl Elele 0000-0002-8075-6531

Fatma Olcay Topaç 0000-0002-6364-4087

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 4 Mayıs 2021
Kabul Tarihi 1 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 2

Kaynak Göster

APA Elele, A., & Topaç, F. O. (2021). ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 389-400. https://doi.org/10.17482/uumfd.932288
AMA Elele A, Topaç FO. ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU. UUJFE. Ağustos 2021;26(2):389-400. doi:10.17482/uumfd.932288
Chicago Elele, Anıl, ve Fatma Olcay Topaç. “ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 2 (Ağustos 2021): 389-400. https://doi.org/10.17482/uumfd.932288.
EndNote Elele A, Topaç FO (01 Ağustos 2021) ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 389–400.
IEEE A. Elele ve F. O. Topaç, “ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU”, UUJFE, c. 26, sy. 2, ss. 389–400, 2021, doi: 10.17482/uumfd.932288.
ISNAD Elele, Anıl - Topaç, Fatma Olcay. “ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (Ağustos 2021), 389-400. https://doi.org/10.17482/uumfd.932288.
JAMA Elele A, Topaç FO. ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU. UUJFE. 2021;26:389–400.
MLA Elele, Anıl ve Fatma Olcay Topaç. “ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 2, 2021, ss. 389-00, doi:10.17482/uumfd.932288.
Vancouver Elele A, Topaç FO. ATIK AKTİF ÇAMURUN HİDROKSİL VE SÜLFAT RADİKALLERİ İLE DEZENTEGRASYONU. UUJFE. 2021;26(2):389-400.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr